
Development of a GPGPU Video Encoding
Server Application in a Multi-GPU

environment

B.Eng. Christian Kehl ∗ B.Eng. Christian Froh ∗∗

∗Uinversity of Applied Sciences Technology, Business and Design,
Wismar, 23952 Germany (e-mail: Christian.Kehl@gmx.net).

∗∗Uinversity of Applied Sciences Technology, Business and Design,
Wismar, 23952 Germany

Abstract: Since the release of the first OpenCL-version, an emerging interest porting highly
parallel, highly complex tasks to the GPU exist in many computing branches. One of the most
profitable branches within GPGPU computing is image- and video processing. While being
used for development of new desktop software based on OpenCL, present online video services
are not using this technology so far. In times of low-performance, small-format computers
like netbooks, display workstations and handhelds, the integration of GPGPU computing in
multimedia server applications can be a significant push for web startups, gathering new users
and markets. Therefore, the department of multimedia engineering at the University of Wismar
has formed a small group to create a GPU-based video processing service on prototype level.
It has been created a C-written console server application based on OpenCL and OpenCV for
fast video encoding and manipulation. The server application is controlled by a Silverlight RIA
with modern layout as well as client-side video player and key frame extractor. Measurements
have shown the significant performance advantages that prove this application to be a pointer
to the right direction of server-side video processing.

Keywords: Multi-GPU, GPU Video Processing, OpenCL

Fig. 1. Badaboom: NVIDIA desktop example application
for GPGPU Video processing

1. INTRODUCTION

In present time, videos are commonly encoded by pro-
grams that are using the CPU for computation and data
reduction. Because each frame can be processed inde-
pendently, video processing can be parallized very good.
Since the development of the GPGPU technology, it is
possible to let the GPU do all the work. This results in a
massive speed-up, which can be seen in various example
applications (NVIDIA [2010]). The video software itself
is inspired by the approaches of commercial client-side
applications, i.e. NVIDIA Badaboom (Fig. 1) and AVIVIO
Video Converter.

These applications offer desktop users great benefits of
their hardware set. Besides this, the market for small,

energy-efficient devices as well as workstation solutions is
emerging. These users are not able to benefit from the
GPGPU technology because their hardware has too less
performance. The majority of them take their software out
of "the cloud". This is possible due to RIA 1 and their
broad capability set. The significant component of RIA is
the corresponding server application. Empowering video
encoding server applications with GPGPU technology will
give their clients the ability to encode videos faster.

The speed advantage getting by this technology is used
in the new application to provide different image pro-
cessing filters for picture quality enhancement. Methods
applied for picture quality enhancement are presented in
"Image Manipulations" (1.3).

1.1 Video Processing on the GPU

GPGPU technology is implemented in a variety of different
APIs and libraries. OpenCL has been chosen for the de-
velopment of the new server application. Since version 1.1,
OpenCL comes with ICD support (Christiopher Cameron
[2010]) enabling most functions and applications to run
both on NVIDIA-based as well as ATI-based systems.
This is advantageous concerning portability and scalability
issues. For access to the video image data, OpenCV has
been chosen as a first, simple interface for regulated video
access. The extracted data are sent to the GPU, where
1 RIA - Rich Internet Applications use internet technologies and
provide an intuitive graphical user interface.

Fig. 4. original OpenCV image data pixel byte order

several filters described in "Image Manipulations" (1.3)
are applied on the video. It is planned to give a choice
whether to apply a filter or not in order to let the user
give the choice how long a conversion will take.

The software as a whole is controlled by the RIA frontend
application. It offers a variety of interaction with the video
conversion and encoding backend, as described in figure 3.

1.2 Video Recording with OpenCV

OpenCV is a popular, open image processing library based
on C. An extension enables the user to open video files
of pre-defined codecs, grab frame by frame and push
result images into corresponding containers with OpenCV.
Because of the long experience and the clear structure,
OpenCV has been used as a first approach to access video
data.

Within OpenCV, the frame access is organized sequen-
tially. Pre-defined requirements for each video are:

• no resolution change of pictures within a video
• access to pixel colors results in RGB values
• pixels are ordered in main column order

The memory values are originally stored as 8 bit character
values in BGR order. The memory organization is as shown
in figure 4.

For flexibility reasons, this arrangement needs to be
changed. During the conversion, it is advantageous to do a
key frame extraction of the original and converted video.

Internally, OpenCV uses some parts of the FFMPEG
C-library. For some reasons not all available FFMPEG-
codecs are possible to use in OpenCV, which needs to be
concerned in the design of the system.

1.3 Image Manipulations

Regarding the further presented software system, the GPU
performance speed-up is used to compute functions for
image manipulations and correction for each frame. These
effects are separated into the two categories of image
enhancement and artistic filters. The computation queue
is ordered so that point-wise operations are done before
sharpening or smoothening the image. After enhancing the
picture quality, the artistic filters are applied.

The majority of filters either operates on luminance values
or can be applied only on luminance values to get the
desired effect. Therefore, a color space transformation is
done to extract the luminance values. The YIQ model

has been chosen as temporary destination color space.
After applying all effects it needs to be re-transformed.
The color space transformation is done on the GPU. The
transformation function is:

Y = 0.299 ·R + 0.587 ·G + 0.114 ·B
I = 0.595716 ·R− 0.274453 ·G− 0.321263 ·B
Q = 0.211456 ·R− 0.522591 ·G + 0.311135 ·B

(1)

The first filter applied on a frame is the linear gray scale
transformation. It is used to modify overall luminance and
contrast. The disadvantage of linearity in this case is the
possibility to over-brighten or over-darken the frames. The
linear formula is as following (Equation 2):

Y ′ = c2 · (c1 + Y)
−Ymax < c1 < Ymax
0 < c2 < Z
inside the application:Z = 10.0
standard value for c1:Z = 10.0
standard value for c2:Z = 10.0

(2)

The second filter is a non-linear gray scale transformation
implemented as Gamma-correction. It modifies contrast
and luminance without over-brighten or darken the frame.
The following equation (3, Wilhelm Burger [2005]) de-
scribes this modification.

y = fγ (x) = xγ

for : x = [0...1] ; y > 0

x =
(

Y
Ymax

)
for : Y, Ymax = [0...255]

y =
(

Y
Ymax

)γ
for : y = [0...1]

Y ′ = y · Ymax
for : Y ′, Ymax = [0...255]

Y ′ = Ymax ·
(

Y
Ymax

)γ

(3)

The gray scale transformations is followed by a Gaussian
smooth filter. This consists of a 3x3 Matrix with a variable
weight of the filter box. The implementation is adapted
from an example OpenCL Gaussian Filter. It uses the par-
allel processors for column-wise parallel execution. Each
Kernel computes the filter row-wise in a loop. Therefore,
each pixel is read out of the global memory. Then, the
present filter output is computed for each pixel of an m-by-
m field downwards. Subsequently, each temporary result is
taken and computed for the total horizontal output value
upwards. Afterwards, each m-by-m field is transposed and
the computation kernel starts again. Because of the switch,
the horizontal output is taken to compute the total output
vertically with the same kernel. Finally, the picture is
transposed one last time and the picture is filtered. Figure
5 shows this algorithm.

The execution continues with an edge sharpening filter.
This is done by a 3x3 LaPlace-Kernel with variable epsilon.
This defines the LaPlace ratio of the resulting image and
therefore the strength of sharpen. The implementation
is done by modifying an OpenCL example of the 3x3

Fig. 2. OpenCL GPGPU Computation - ”Pipeline-as-a-State”: Shows the general process of video modification on the
GPU.

Fig. 3. General use case diagram showing interaction possibilities with the new video software

Fig. 5. algorithm description of the GPU Gaussian smooth
filter

Gaussian Smooth filter. The filter matrix presented in
equation 4 is used.

K =

[
0 −1 0
−1 4 + e −1
0 −1 0

]
(4)

After these image correction and enhancement filters,
artistic effects are applied to the video. This is done
under mutual exclusion. Implemented artistic effects are
the transformation into gray scale picture and the sepia
transformation. For gray scale video frames the I- and
Q-Channel are deleted so that the Y-Channel with

luminance information remains. Concerning the Sepia-
Transformation, following Matrix is applied to the frames.

R′ = 0.393 ·R + 0.769 ·G + 0.189 ·B
G′ = 0.349 ·R + 0.686 ·G + 0.168 ·B
B′ = 0.272 ·R + 0.534 ·G + 0.131 ·B

(5)

2. DESIGN

The software is divided into four main groups: database
access, main function and video services, GPGPU API and
one group for the OpenCL background.

The database access is kept to a minimum. This is possible
because the only things to do with the database are getting
the clustered information of a project, update a project
and register new key frames. The main interaction with
the Frontend is done by a C# super-server, the database
class and the database itself. The main function includes
the algorithm shown in figure 6. The GPGPU API is
an in-between class taken from Kehl [2010]. It clusters
initialization and connection methods for a variety of
GPGPU libraries and APIs. For this project only OpenCL
is activated.

The OpenCL group is one class. Regarding the complexity
of these operations its design fundamentals are presented
in further subchapter.

Fig. 6. main-function algorithm

2.1 Combination of OpenCV and OpenCL

The aim of the GPGPU processing is the picture-wise
modification with listed effects. Therefore, the image data
need to be transferred to the OpenCL class. The original
image data are pointers in the main memory, but for
processing different side parameters like width, height,
spacing and bit depth also need to be present. On purpose
to create a flexible, portable software package that can
also be compiled as library, there should be introduced a
new class or structure for these data. Instead, it has been
decided to integrate the IplImage structure in OpenCL.
Therefore, a pointer to the present frame and a pointer to
the destination frame are forwarded through the GPGPU
API to the OpenCL class. The destination frame is an
image with the same parameters as the original frame but
with empty image data.

The programming interface therefore is designed simple.
The GPGPU API has an open interface function to start
the encoding process. All necessary parameters for images
and effects are given to the interface. The clamping and
processing of standard values is done in the OpenCL class.
The whole collaboration process is documented in the
following diagram (Fig. 7).

2.2 Multi-GPU support

As described in Kehl [2010] combining multiple GPUs
at once to fulfill a task is a possible way to speed up
computation. In order doing this, the OpenCL system has
to be adapted to some extent.

We decided to use multiple cards for rendering each frame
as fast as possible. Therefore, the frame needs to be
separated into areas of same size. Each part frame of the
original is transferred to the corresponding GPU. For easy
split-up, the H-LFR 2 mode is suited very well for this
task. The algorithm is described in detail by figure 8. A
special point is that the resolution also defines the work-
size dimension of the GPU task. This should be a power-of-
two number. Odd resolution numbers for part frames are
leading to unused resources. It can also happen that local

2 H-LFR - horizontal line frame rendering separates the part
frame in lines of the same height and the total width

and global work-group size doesn’t match. This results
in uneven divisibility, which is forbidden kernel behavior
[Reference OpenCL spec]. For avoiding any conflicts, the
video frame size needs to be scaled to a power-of-two
dimension in either direction. In addition, if the number
of available GPUs is non-power-of-two, the number of
actually used GPUs is clamped to the next lower power-
of-two number.

After separating the original frame, each part frame is
transferred to the GPU. Multiple temporary part frame
memory objects need to be created and initialized for
effect computation. Each used GPU gets has its own
function pipeline which is controlled by a corresponding
thread. These are started after GPU memory allocation
and compute the effects on the GPU. The main thread is
synchronized with these worker threads and starts frame
composition after last thread’s finish. The workers are
dismissed and the temporary memory is cleaned.

2.3 Successive Kernel Strategy

The input for OpenCL class is the image data byte stream.
The byte stream has to be transformed, as discussed before
(Chapter 1.2). This byte transformation is done before
GPU execution by OpenCV. Afterwards, the byte stream
is prepared for decomposition or transferred into a GPU
texture map.

On execution of the worker thread the effects computation
begins with the color space transformation (Chapter 1.3)
which is the only operation that cannot be skipped out.
Afterwards, the effects are computed in order as presented
before (Chapter 1.3). Each filter can be controlled by
a minimum of one parameter and each parameter has
standard values indicating that no change is done to the
frame. If all parameters of a particular kernel are set to
standard values, the kernel is skipped and the part frame
is processed by a GPU-internal copy operation to the next
destination temporary memory. After effect processing a
color space transformation back to RGB is performed. The
data flow is described in the figure 9.

Each kernel is created and prepared on object initializa-
tion. This will be discussed in (Chapter 3.3).

Fig. 7. Collaboration diagram of video, GPGPU API and OpenCL

Fig. 8. H-LFR - (de)-composition algorithm

Fig. 9. Data Flow and Byte order Conversion

Fig. 10. Data Flow and Byte order Conversion

3. IMPLEMENTATION

The software has been developed stepwise in the order of
groups as presented. A pre-implemented MFC database
class has been used and adapted for the database con-
nection in the corresponding video database class. For
using MFC CDatabase the ODBC driver of the specific
database needs to be installed and configured. The video
database class is the only proprietary class using MFC. In
case of porting the software to a different system it needs
to be replaced. This is nevertheless the case because the
database itself is the proprietary MS SQL Server 2008.

According to the video class two main functions are
implemented. One function is for general GPGPU code
testing. It performs image processing of one picture thirty
times in a row, take the time and compare the results.
The seconds is the video encoding function. Several helper
functions have been created to efficiently choose the right
codec, perform the key frame extraction of destination
videos and modify the aspect ratio in the way described
in figure 10.

The GPGPU API class has been modified to forward
parameters as shown in figure 7. In addition, the only
supported parallel technology is OpenCL, so the other
technologies have been disabled.

The main focus is on the OpenCL class, which will be
focused in the following subchapters.

3.1 Textures and Byte Streams

As presented in Chapter 2.3 the input data for the
OpenCL class is an ordered RGB byte stream which is
decomposed into part frames. For further processing, the
byte stream can be taken as it is, it can be formed into a
pinned / mapped buffer or transformed into a texture.

Textures are complicate to set-up. In addition, textures
in the memory can’t be swapped with each other or be
replaced. Another disadvantage is the limited, supported
atomic data types for GPU textures. Usage of textures
for the video processing task has been tested. Although
the simplest filter on RGB textures works, the system
uses one byte stream technique. The disadvantage of hard
conversion of two 32 bit type textures and the left-out
possibility of fast texture data replacement are the main
reasons for this decision. If GPGPU texture techniques are
developing like in 3D Shaders, so that the function area is
automatically interpolated, textures would be an option in
order to perform fast geometric transformations.

Consequently, the byte stream solution is taken. It’s used
as non-pinned / non-mapped buffer because the memory
regions are changing from frame to frame. Pinned Buffers
are of use if the buffer address space is not changing
because it cannot be moved or swapped. Therefore, speed
advantage can be gained by using the maximum transfer
rate of the PCI-Express Bus. In contrast, the video frames
are dynamically loaded into the main memory, processed,
saved on the HDD and then dismissed, so each frame needs
individually to be pinned / mapped and de - pinned / de-
mapped. The speed advantage gaining by that is not sure.
That’s why, pinned buffer technology was skipped.

The part frame image data are transferred to the GPU
memory as signed character values. Beginning from the
initial- until the end color space transformation, the tem-
porary data are processed as single-precision floating point
values.

For skipping effects with standard values, the GPU-
internal function for copying buffers is applied.

3.2 Video Memory Structure

Due to the successive kernel strategy, the computation
time for each part frame is significantly high. Vector-
ization of rows of matrices has been taken into account
as optimization method to decrease computation time.
Vectorization can be used in the following functions:

• color space transformation from RGB to YIQ
• color space transformation from YIQ to RGB
• linear gray scale transformation
• sepia transformation

It has been examined if this technique leads to optimiza-
tion and, if that’s the case, how efficient the speed-up is.
As an example RGB-to-YIQ-transformation is described
in the following. Vectorization in that case is meant to
replace row-wise constant factors with OpenCL-integrated
memory vector types (Munshi [2010]). For the color space
transformation, these are the transformation factors as
seen in then following formula.

Y = 0.299 ·R + 0.587 ·G + 0.114 ·B
I = 0.595716 ·R− 0.274453 ·G− 0.321263 ·B
Q = 0.211456 ·R− 0.522591 ·G + 0.311135 ·B

(6)

The software is developed with OpenCL 1.0 which only
supports vector field lengths of one, two and four. Con-
sequently, a vector field length of four was chosen while
setting the last component to zero. These vector fields are
created in the main memory and on execution transferred
onto the GPU as constant vector fields. On the GPU, these
values are saved sequentially in GDDR memory, which
should lead to faster access times. In addition, color values
are also vectorized because these values are accessed lots
of times in one kernel. The formula is then replaced with
the following one.

RC =

 Y
I
Q
0

OC =

R
G
B
0

D =

[
0.299 0.587 0.114 0

0.595716 −0.274453 −0.321263 0
0.211456 −0.522591 0.311135 0

]

RC11 = D11 ·OC11 + D12 ·OC12 + D13 ·OC13

RC12 = D21 ·OC21 + D22 ·OC22 + D23 ·OC23

RC13 = D31 ·OC31 + D32 ·OC32 + D33 ·OC33

(7)

In contrast to the expected performance increase, a slight
decrease of ten percent has been measured in a series of
six different original pictures with ten passes per picture.
Therefore, the present software version uses non-vectorized
kernels.

3.3 Constant Kernels

In previous GPGPU software systems the GPU kernels
were compiled and build "On-the-Fly", meaning at the
point of usage. This, in particular, is a bottleneck of the
application. For GPU software with very dynamic kernel
execution this is an unavoidable problem, but for the effect
processing computation steps and kernel execution order
are static. It only needs to be differentiated if a kernel
at one positions needs to be executed or not (resulting in
memory copy operation). This leads to the possibility of
pre-compiled kernels executing on their specific position.
This is done by creating, compiling and building them in
the initialization routine for the OpenCL class. The kernels
and their execution order stay constant for the whole
execution cycle. They are dismissed with the destruction
operation of the OpenCL class. Their execution call is done
for each part frame in the corresponding worker thread.

4. PERFORMANCE MEASUREMENTS

In this chapter a listing of time measurements regarding
the video conversion and effect computation can be found.

Generally, considering the time consumption affected by
the input video time, the conversion of small videos is
relatively high in comparison to long videos. This is the
OpenCL initialization trade-off. The OpenCL initializa-
tion and Multi-GPU context creation takes 25-50 seconds,
depending on overall system load, present graphics load
and number of GPUs. Measurement two to four have
been taken in times without constant kernels, therefore
taking up much more time. The overall conversion time
rises dramatically by higher resolution encoding. This is
because scaling of frame is done on the CPU with next-
neighbor interpolation. This can be reduces with GPGPU
technology when scaling and interpolations can be done
inside OpenCL. The number of effects computed by the
GPU, and therefore the kernel execution time, has signifi-
cant influence on the total conversion time. Consequently,

the effect-skipping possibility strategy is a good way to
control the conversion time.

5. FRONTEND CONNECTION

The Silverlight-based RIA Frontend is interconnected by
3 different subsystems. The first subsystem is the backend
database connection class. Data are transferred over the
database making the implicit communication obvious.
The second subsystem, the database management system
itself, is responsible for controlled updates of the database
entries. For synchronization the status and configuration
information are vital. The backend application triggers
status changes and determine, by connecting status and
configuration, the present conversion status, as described
below.

• if there are configurations of one project ready for
processing, take the oldest configuration created and
convert this

• if there is one configuration of one video project
converting at the moment, the GPU is blocked by
another instance of the server application; therefore
skip momentary execution

• if not all configurations of one project are done,
complete the conversion of one project

• if all configurations of all projects are converted be
idle

The presented database tables are very important for
synchronization and stability, so the database triggers need
to react fast for interaction. Taking the GPU as conversion
component, the main processor is idle so that the database
has sufficient resources to complete the tasks.

The last subsystem is a self-created video service super-
server, starting the backend application on demand. This
prevents implementing the backend application as polling
service using up lots of resources. The super-server also
triggers database changes.

6. FUTURE DEVELOPMENT

Although the server is running and converting videos there
are some issues to fix, some compatibility and version
problems to resolve and some extensions to implement for
a first final version.

Concerning the issues database triggers needed to be im-
plemented with work-around methods due to the complex,
inconsistent user management within the Microsoft Win-
dows 7 operation system and its system software. Another
issue is the codec management and undefined behavior
in OpenCV. Although OpenCV can convert only a few
codecs (Agam [2006]), the encoding itself has a high failure
rate for particular combinations of extension and codec.
Moreover, there is an undefined behavior of video encoding
in high-resolution frames. This can be fixed by switching
to the original FFMPEG library as it will be proposed in
further passages.

In the application there exists a whole list of incompatibil-
ities due to the predefined versions of binaries of used APIs
and libraries. Due to the underlying 64-Bit technology and
the 64-Bit operation system the video encoding software
should be a 64-Bit application too. OpenCV as image

Table 1. Performance Measurements

Start Configuration End Configuration Time Consumption

MPEG-4; 720x720; 24 fps; 2.3 Mbps;
00:00:33 h

MPEG-4; 1024x768; 24 fps; 50.3 Mbps; all
effects; gray

00:01:12 h

MPEG-4; 720x480; 59 fps; 3.6 Mbps;
00:00:09 h

MJPEG; 1280x720; 59 fps; 75.4 Mbps; all
effects; color

00:03:14 h

MPEG-4; 720x480; 59 fps; 3.6 Mbps;
00:00:09 h

MPEG-4; 1280x720; 59 fps; 62.1 Mbps; all
effects; color

00:00:57 h

MPEG-4; 1280x720; 29 fps; 4.0 Mbps;
00:01:40 h

MPEG-4; 960x720; 29 fps; 44.2 Mbps;
LGST1 ; color

00:08:32 h

MPEG-4; 640x480; 25 fps; 1.1 Mbps;
00:21:11 h

MPEG-4; 1280x720; 25 fps; 51.4 Mbps; no
effects, gray

00:25:53 h

1 LGST - linear gray scale transformation

software library is shipped as 32-Bit library only. The used
OpenCL NVIDIA Computing SDK is available with 64-Bit
libraries. Within Visual C++ it’s originally not possible to
combine them for several reasons:

• An application compiled for MACHINE:X64 can only
inherit 64-Bit libraries, therefore no OpenCV

• An application compiled for MACHINE:X86 can only
inherit 32-Bit libraries, therefore not the available,
installed NVIDIA Computing SDK libraries

As a solution, the NVIDIA Computing SDK was compiled
as a 32-Bit compatibility version. Nevertheless, the 64-Bit
C# super-server needs special privileges to run a 32-Bit
application as a 64-Bit father process. As possible solution
OpenCV can be replaced with another library that is 64-
Bit compliant. In addition, a 64-Bit application can also
be started by the SQL Server 2008 64-Bit version within
a trigger, which opens up the possibility to leave out the
super-server subsystem.

Another version incompatibility point is the NVIDIA
Computing SDK version 3.0. Some logging- and debugging
functions like shrCheckError and shrLogBot have been
dismissed in the new SDK version or have been moved
to the ocl-library. Therefore, the basic GPGPU API and
Multi-GPU OpenCL code is not working with the new
version. This led to the usage of the NVIDIA Computing
SDK version of February 2010. The code needs to be
modified to replace the main server version and to use
new capabilities.

This change opens up new extension possibilities. Due to
the cloud computing-character of the application, it should
be developed a super-server distributing created video
project configurations to parallel graphics servers. Accord-
ing to the present OpenCL version, supporting OpenCL
ICD, this can also be done in a heterogeneous environment
of graphics servers, leading to large scalability.

The usage of FFMPEG would allow the transcoding of
videos into nearly every existing video codec, skipping one
big limitation of the present application. In addition, it will
then be possible to encode and modify the audio channel,
giving new use cases and opening up new capabilities for
the user. For FFMPEG integration it can be used the C-
based library as long as the memory alignment of data is
partly compliant with the existing memory management
inside the application.

REFERENCES

Gady Agam. Introduction to programming with opencv.
electronic, January 2006. URL http://www.cs.
iit.edu/~agam/cs512/lect-notes/opencv-intro/
opencv-intro.html.

Micheal Houston John Kessenich Christopher Lamb Lau-
rent Morichetti Aaftab Munshi Ofer Rosenberg Chris-
tiopher Cameron, Benedict Gaster. Opencl khronos icd.
electronic, March 2010. URL http://www.khronos.
org/registry/cl/extensions/khr/cl_khr_icd.txt.

Christian Kehl. Research on the optimization of graphical
data processing systems in multi-gpu environments.
Bachelorthesis, University of Wismar, March 2010.

Aaftab Munshi. Opencl specification. electrionical, Oc-
tobre 2010. URL www.khronos.org/registry/cl/
specs/opencl-1.0.48.pdf.

Corporation NVIDIA. Cuda zone - the resource for
cuda developers, 2010. URL http://www.nvidia.de/
object/cuda_apps_flash_new_de.html.

Mark James Burge Wilhelm Burger. Digitale Bildverar-
beitung. Springer, 2005.

http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
http://www.khronos.org/registry/cl/extensions/khr/cl_khr_icd.txt
http://www.khronos.org/registry/cl/extensions/khr/cl_khr_icd.txt
www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf
www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf
http://www.nvidia.de/object/cuda_apps_flash_new_de.html
http://www.nvidia.de/object/cuda_apps_flash_new_de.html

	Introduction
	Video Processing on the GPU
	Video Recording with OpenCV
	Image Manipulations

	Design
	Combination of OpenCV and OpenCL
	Multi-GPU support
	Successive Kernel Strategy

	Implementation
	Textures and Byte Streams
	Video Memory Structure
	Constant Kernels

	Performance Measurements
	Frontend Connection
	Future Development

