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Within our research, we study the possibilities of semi-automatic Content-Based Visual Information
Retrieval (CBVIR) for large scale, growing media archives. The growing amount of audio-visual
data, shown in table I, poses a challenge to media archives, such as the Dutch National Institute
for Sound and Video (NISV) and comparable institutions (BBC, France Télévision). While visual
indexing in practice is commonly performed manually, we propose to use Visual Object Classification
(VOC) approaches for tagging archived and novel content items with respective labels. Our initial
system design in figure 1 is the result of an interdisciplinary workshop (ICT with Industry 2013 )
that connects ideas from Computer Vision, High-Performance Computing and Information Retrieval,
based on industry demand. Initial commercial applications (e.g. Orpheus 1 and pixolution 2) provide
rudimentary solutions for small datasets.

data size [hours of video] 500.000
data growth [hours per day] approx. 50
data size (storage) 12 Petabytes
average content item length [minutes] 20

Table I
Typical current data volume of media archives, on the example of NISV.

Figure 1. Initial system design of the ”ICT for Industry” workshop 2013

Within the scientific VOC community, a paradigm shift occurred within recent years. Formerly,
approaches such as template matching or Bag-of-Words (BoW) [1] were used for image [2]- and
video [3] classification of large-scale repositories with GPU acceleration [4]. Since the introduction of
Convolutional Neural Networks (CNNs) for solving VOC challenges by Krizhevsky et al. in 2012 [5], the

1img(Anaktisi) Image Retrieval software - http://orpheus.ee.duth.gr/anaktisi/
2pixolution - fusing visual and keyword search - http://fusion.pixolution.de/

http://orpheus.ee.duth.gr/anaktisi/
http://fusion.pixolution.de/
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approach has shown remarkable success in classifying large-scale, static-size image [6]- and video [7]
repositories. Advances on CNNs are commonly demonstrated on static-size datasets, connected to
classification challenges such as ”Pascal VOC” [8] and ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [9].
CNNs achieve superior classification precision by learning from massive training datasets, which is a

time-consuming and memory-restricted process. Krizhevsky et al. already employed GPU Computing
at the convolution layers [5]. Recently, the method has split into a data-parallel stage (including
the convolution- and pooling layers of the Neural Network (NN)) of I/O-bounds operations, and a
model-parallel stage (including fully-connected layers at the of the NN) of memory-bound operations.
Krizhevsky proposed a parallelization stategy for both stages [10]. Other research groups explored
different data [11]- and model [12] parallelization strategies. Exploiting data parallelism is prominent
for speeding up CNNs in Deep Learning packages (e.g. Theano [13]).
With our research, we explore the challenges of dynamic, fast-growing data collections (e.g. modern

media archives) and the tradeoffs they impose on existing CBVIR methods. Our approach addresses
the challenges of such evolving datasets (i.e. a significant amount of content and tags changes after
the initial training), which differs from the existing methods for challenge repositories (e.g. ILSVRC,
PASCAL VOC). CNN classification scores follow their training set. We hence propose a new paramet-
rization scheme for classifiers, taking the classification variance within different training sets as key
assumption. We plan to steer the learning stage via adapting the training set’s sample rather than the
VOC parameters (e.g. NN architecture and connectivity). Additionally, as shown in figure 1, we plan
to incorporate user feedback on the classification quality in the classifier parametrization.
We propose a semi-automatic implementation for a prototype system. The flexible design uses

workflows to organise the data flow, which allows the integration of different VOCs as white-box
models. Parallel workflow frameworks also facilitate the system’s scaling across computing platforms,
such as the DAS-4 cluster3, allowing the transparent implementation of parallelization strategies [10]–
[13] on accelerators. WS-VLAM [14]4 is a viable workflow implementation, which organises the data
flow according to state charts (such as fig. 2). In specific test cases, available CNNs can be used as
visual object classifier.

Figure 2. State chart of the visual classification system. Rhombi model datasets, while rounded squares model state
transformations. For each transformation, the top row describes the output state of the transformation, the bottom row
describes the transformation function.

Initial experiments were conducted on the CIFAR-10 [15] dataset, while novel tags and sample
images were successively added from CIFAR-100 [15]. The experiments were conducted on GPU- and
shared-memory parallel computing platforms. CNN architectures were prototyped in PyLearn2 [16].
The experiment architecture resembles the network of Krizhevsky et al. [5]. For testing the use of
pre-trained networks and final network layer recomputation on tag- and image updates, a base model
with a sigmoid non-linearity as last layer is used. Shown experiments adhere to the following scheme:

• Experiment 1: training the basic CIFAR-10 dataset with 100 samples
tag

3The Distributed ASCI Supercomputer 4 - http://www.cs.vu.nl/das4/about.shtml
4WS-VLAM implementation ”pumpkin” - https://github.com/recap/pumpkin

http://www.cs.vu.nl/das4/about.shtml
https://github.com/recap/pumpkin
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• Experiment 2: training the base dataset with 100 samples
tag , for re-training of updates

• Experiment 3: training CIFAR-10 (100 samples
tag ) with 3 added tags (10 samples

tag , under-represented)
• Experiment 4: training CIFAR-10 (250 samples

tag ) with 3 added tags (10 samples
tag , highly under-

represented)
• Experiment 5: training CIFAR-10 (100 samples

tag ) with 3 added tags (all 100 samples
tag )

• Experiment 6: training a dataset replacing 3 original CIFAR-10 tags with 3 CIFAR-100 tags and
adding all corresponding CIFAR-100 samples. This represents a generalisation after large media
updates, using 100 samples

tag
• Experiment 7, 8 and 9: Equal datasets as experiments 3, 5 and 6, but only re-training the final

softmax classification layer, using experiment 2 as base model
The evaluation of each experiments used the full test dataset of 1,000 samples per class from CIFAR-

10, and all test images for added tags. The tag replacement was done to resemble generalisations.
Average prediction error rates per experiment are given in table II. Table III shows the computation
times per platform. The tested platforms include NVIDIA Tesla C2050 (plat.1)- and NVIDIA GTX680
(plat.2) accelerators, a workstation graphics adapter (plat.3), a shared-memory Intel SandyBridge CPU
of the DAS-4 cluster (16 threads used, plat.5), and an Intel Xeon CPU (8 threads used, plat.4). Figure 3
shows the impact of the computing architecture on the runtime for the three major scenarios of full
model computation, model precomputation and last-layer retraining.

Exp. 1 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9
0.89670 0.90551 0.89702 0.91935 0.86563 0.89881 0.91458 0.84435

Table II
Model prediction errors of CNN-based VOC, using dynamic data samples.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9
00:25:52 00:49:16 00:26:33 00:31:19 00:27:20 00:27:21 00:05:08 00:05:14 00:05:21
00:19:13 00:23:49 00:10:51 00:13:13 00:11:18 00:11:17 00:02:55 00:02:42 00:02:47
04:04:04 07:42:21 04:12:25 05:38:37 04:28:12 04:27:19 00:43:06 00:45:29 00:45:32
04:09:06 07:49:06 04:35:59 06:33:25 05:02:56 04:49:39 00:47:14 00:49:21 00:50:28
01:15:54 02:42:19 01:18:45 n/a n/a n/a 00:18:19 n/a n/a

Table III
Training times for each experiment on given platforems (listing order in text).

Figure 3. Visual comparison of runtimes on the assessed platforms, for the scenarios of full recomputation, model
precomputation and last-layer retraining.

The comparably small CIFAR-10 dataset was chosen for the experiments due to time constraints.
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Its prediction error rates are limited by the large amount of overfitting with respect to the parameter
space. Despite the overfitting, we can conclude from table II that fully recomputed- and last-layer
retrained experiments score comparably. This means the usage of retraining on update procedures
appears to be a valid procedure to largely reduce computation times on data updates. A significant
impact of tag under-representation of samples on the error rate was not observed in the experiments,
which may be present on larger datasets. However, even within this small example, different sample
rates have an impact on the final score. Higher samples rates score on average 0.8% better than lower
sample rates. Tag generalisation has shown to be a good way to improve scores.
Accelerators are favourable to the method, due to its large amount of convolution operations. More

interestingly, the experiments show the use of precomputed models for large-scale reclassification when
introducing new image samples- and tags. Although model precomputation takes approximately twice
the time of full model training, large amounts of updates (as shown in table I) justify precomputations.
In combination with very fast last-layer retraining, the proposed method potentially outperforms full
model recomputations (see fig. 3).
The next step is the further method evaluation on the ILSVRC 2010 model with additional ImageNet

content and tags. We will moreover assess the impact of model retraining at different layers on accuracy
and runtime. The measurements will give us further indications towards the accuracy-speed trade-off’s
and scalability. This also gives further insight to the theory of steering the classification via its data
sample.
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