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Abstract. The registration of outdoor photograph to available 3D models is a 

common procedure in geoscientific workflows. Current algorithmic approaches 
are limited in their applicability by inaccurate initial external orientation and 
position estimates, and fail to produce satisfying registration results under 

varying radiometric conditions, such as illumination changes. This article 
presents new results in the application of digital elevation models for initial 
positioning. Furthermore, new algorithmic feature-based registration methods 

are introduced and assessed together with image processing methods to 
improve image-to-geometry registration accuracy under challenging outdoor 
illumination conditions. Our results indicate that alternative local descriptors in 

combination with image processing allow 2D-3D co-registrations that were 
previously impossible to retrieve. 

 
1 Introduction 
 
The mapping of photographic images to geoscientific surface model in 3D, referred 
to as image-to-geometry registration, received increasing attention in recent years. 
Major contributing factors for this interest is the large availability of surface models 
due to structure-from-motion (SfM) and lidar scanners, and the availability of 
photographs from ubiquitous mobile devices. The mapping can be used to re-
texture existing surface models or introduce semantics in a model via annotated 
photographs. Several applications for the registration have been shown recently, 
ranging from outdoor navigation [1] over the detection of river flood events [2] to the 
mapping of geological interpretations [3]. 
 The image-to-geometry registration on mobile devices is commonly realised using 
a 2D-3D feature correspondence matching. Although alternative registration 
approaches, such as mutual information [4], exist, feature-based registration is the 
prevalent approach across application domains because of the availability of 
algorithms (e.g. feature detection, pose-n-perspective (PnP) estimation), their 
simple parameterisation and their control via image processing. Furthermore, all 
necessary subroutines are available and accessible on novel computing platforms, 
such as Android mobile device. A major challenge within feature-based image 
registration is its sensitivity to radiometric variance (e.g. due to illumination 
changes) between the texture of the surface model and the to-be-registered 
photographs. This illumination sensitivity is illustrated in Fig. 1, where the same 
textured surface model is used to register photos obtained on different field 
campaigns for digital outcrop studies. The photo obtained simultaneously to the 



texture (Fig. 1, top) is correctly registered, while the same algorithm fails in 
registering the photo of the other campaign (Fig. 1, middle). This is a problem also 
common to many other computer vision applications, such as outdoor navigation 
and structure-from-motion reconstruction. Initial experiments with alternative 
detectors have shown promising results (see Fig. 1, bottom). Furthermore, as 
discussed by Kehl et al. [5, 3], initial estimates for position and orientation need to 
be available for the registration. Mobile device sensors acquire infeasible position 
data due to GPS inaccuracies. 
 

 

 

 
Fig. 1 Variability of registration accuracy on illumination conditions. A previously 
successful SIFT matching (top) may fail with changing illumination (mid). Alternative 
feature algorithms (e.g. MSCR, bottom) may resolve the illumination sensitivity. 

 This article introduces new approaches to overcome existing limitations in the 
coarse pose approximation and the sensitivity to illumination changes, targeted to 
mobile device implementations. In detail, the article shows the initial position 
improvement achievable by using compact, publicly available digital elevation 
models (DEMs). More importantly, the article assesses the impact of using the 
Wallis filter [6] and gamma adaptation [7] on the pose estimation accuracy of 
feature-based image-to-geometry registration methods. As a validation dataset for 
the approach photo series from two different field campaigns are presented which 
exhibit challenging, large radiometric variations. They are registered to a lidar-
based digital outcrop model (DOM). 
 
2 Related Work 
 
The photogrammetric literature already contains studies on automatic, feature-
based image-to-image registration, such as Jazayeri and Fraser[8]. This particular 
article builds on the work of Kehl et al. [5, 3], where openly available feature 
detection and pose estimation algorithms are used to register natural photographs 



to lidar-derived DOMs. The approaches utilise mobile device sensor data to obtain 
a coarse, initial pose necessary for the subsequent pose estimation refinement. 
Recent developments along that research trajectory [9] have shown that feature 
detection-, description- and mapping combinations other than the established scale-
invariant feature transform (SIFT) [10] and speeded-up robust features (SURF) [11] 
lead to improvements of image-to-geometry registration procedures under 
challenging radiometric variance. This article hence further compares the impact of 
image processing on SIFT-based, maximally-stable colour regions (MSCR)-based 
[12] and “Features from Accelerated Segment Test” (FAST)-based [13] feature 
correspondence- and registration methods. 
 The application of global greyscale image processing filters to adapt image 
collections to illumination changes is under-represented in the literature, although it 
represents a logical extension to consider when targeting image registration 
improvements. In many application scenarios that consider image series, such as 
outdoor navigation, a temporal dependency amongst images is observed, which is 
taken advantage of when developing new algorithms. This advantage vanishes 
when considering image series with little temporal or spatial overlap, which is why 
this article discussed image filters that are more generally applicable. The Wallis 
filter [6] has found many applications in the past, such as for image registration [8] 
and the reconstruction of featureless environments, showing promising 
improvements on feature-based algorithms. Furthermore, it is possible to smoothly 
adapt the contrast and brightness using gamma adaptation [7] to account for 
illumination variance. 
 Although the use of other image-to-geometry registration procedures, such as 
mutual information [4, 14], also potentially resolve the illumination sensitivity, these 
methods are not considered as their implementation on target mobile device 
platforms is currently not supported. In particular, mobile device platforms lack 
support for common linear algebra software (e.g. BLAS and LAPACK). 

 
3 Method 
 
The workflow in this study adapts the approach explained in [3, 9] and shown in Fig. 
2 by applying the selected imaging filter before feature extraction and matching. 
Hence, for each obtained photo the related, textured surface model is rendered 
using a virtual camera, for which the external orientation and position is generated 
using mobile sensor data (i.e. GPS/DEM and magnetometer). The DEM-based 
altitude is obtained by interpolating height values on a given, local DEM using the 
GPS latitude and longitude. The rendered image and, in the case of Wallis filtering, 
the photo are subject to the image processing. The processed images are then 
used for salient point detection, feature description and feature mapping. The 
resulting 2D image features have a 3D correspondence in the surface model via the 
virtual camera of the rendered image. The 2D-3D pointsets are put into a PnP pose 
optimization to retrieve the final registration. 
 



 
Fig. 2 Algorithmic pipeline of the adopted image-to-geometry approach. The focus 
of this article is on the initial positioning and the image pre-processing influence. 

 The application of the image processing and filtering is based on the fact that 
most salient point detectors and feature descriptors operate on the greyscale 
channel of an image. On the other hand, the greyscale channel (i.e. “luminance”) is 
the one affected by radiometric variance, which is introduced by changing 
illumination. Therefore, adapting the greyscale channel of an image to account for 
illumination changes potentially results in an improved registration accuracy that 
resolves issues shown in Fig. 1. The Wallis filter is commonly known in 
photogrammetry and computer vision [6]. The gamma adaptation [7] controls 
brightness and contrast of the greyscale curves of images. Fig. 3 shows a 
photograph (top) and its corresponding rendering (bottom), their comparative 
greyscale channels (i.e. the Y channel using YCrCb decomposition) and intensity 
value curves. 
 

   

   
(a) (b) (c) 

Fig. 3 Luminance difference of a real (top) and synthetic (bottom, γ=1.6) image, 
their luminance channel (b) and histograms (c). 

 The registration evaluation procedure considers the following metrics, which are 
identical to other studies on illumination variance[9]: The feature detection results in 
a collection of salient 2D points in the photo Ip and the synthetic image Is. The 



number of correspondences states the number of mutually-unique point mappings 
from Ip to Is. A point pair correspondence is considered matching if the points are 
within a bound ε of one of the epipolar lines connecting both images. The inlier ratio 
after feature extraction (rinlier(feat)) is the ratio between the number of matches and 
the number of correspondences. The inlier ratio after pose optimisation (rinlier(opt)) 
represents the ratio of matched points which adhere to the epipolar constraint 
before and after the pose optimisation. The reprojection error Δ(pxfeat, pxproj) is the 
common measure of average point distance between the initial 2D features and 
their image plane-projected 3D correspondences. Applying the reprojection error as 
the single evaluation metric is a potential risk as it is prone to erroneous 
correlations. The metric values presented in the result section are average values, 
obtained as the mean of each metric over the full image series. The success rate is 
determined by manual pose assessment of the final synthetic image and represents 
the ratio between correctly registered image and the size of the image series. 
 

4 Dataset 
 
In the experimental study, the image datasets and the DOM initially introduced by 
Kehl et al.[3] are used as they contain the challenging registration conditions this 
article attempts to resolve. The DOM is a TLS-based textured surface mesh with 
irregular spacing and possible mesh holes. The photos are split into two image 
series: the first series was obtained simultaneously to the DOM texture during an 
outcrop field campaign in March 2015, and the second series was obtained at the 
same locality during a separate field campaign in September 2015. On both 
campaigns, the photos were acquired with a Google Nexus 5 smarthphone using 
the integrated 8 megapixel camera. The initial pose (i.e. external orientation and 
position) is generated using the GPS or the DEM and the logged geo-magnetic 
orientation of the mobile device. Therefore, the image series are both subject to 
significant geometric variance (in respect to the accurate pose) and a radiometric 
variance (i.e. changing illumination condition) between each other. 
 As a reference for the accuracy improvement using image processing, the results 
presented in [9] under both variances are taken as a baseline. The experiments 
hereby further presented are reduced to the algorithmic combinations of FAST 
detector and SIFT descriptor, MSCR detector and SIFT descriptor, and a pure SIFT 
detection and description. Table 1 shows the obtained baseline results. 
 

 SIFT MSCR-SIFT FAST-SIFT 

# points 12310 5727.7 43020 

# correspondences 8.31 9.93 3.45 

# matches 2.71 0.84 1.12 

rinlier(feat) 0.33 0.09 0.33 

rinlier(opt) 0.02 0.13 0.33 

Δ(pxfeat, pxproj) 11.77 10.05 7392.7 

success rate 0/52 10/52 9/52 
Table 1 Original registration accuracy results, presented in Kehl et al. [8] 

 

4 Results 



 
a) DEM positioning 

 
In order to assess the pose positioning improvement provided by the DEM, the 
differences of the altitudes and sensor data pose positions are compared. The 
differences (treated as mean error deviations) are measured for the GPS and the 
combined data of GPS latitude-longitude and DEM altitude, with respect to a 
manually-obtained, control points-based, PnP-optimized pose. The experiments 
used an external GPS receiver via Bluetooth to overcome consumer electronics 
limitations. The results are mean values of 9 selected data points within the studied 
dataset, shown in Fig. 4. 
 

 
Fig. 4 Accuracy improvement of the initial positioning using DEMs instead of GPS. 

 As can be seen from the diagram, the application of the DEM for altitude 
determination improves upon the position accuracy by approximately 8m. On the 
other hand, this position is subject to a larger standard deviation than the GPS 
altitude signal in the field. Reasons for the large standard deviation are the low 
lateral resolution (in this case 25m x 25m), the linear interpolation scheme and the 
terrain variability close to outcrop sections (e.g. cliffs and hill sections). In such 
remote outdoor locations, the GPS satellite reception is good compared to urban 
environments, giving an accurate lateral position compared to the lateral DEM 
resolution. Despite the good reception, the GPS altitude measurement is still more 
erroneous after geoid processing than DEM altitude measurements that occur close 
to cell corners. 

 
b) Wallis filtering 

 
Table 2 shows the statistical results of the feature-based registration procedure on 
the Wallis-filtered photos and synthetic image data, compared to Table 1. 
 

 SIFT MSCR-SIFT FAST-SIFT 

# points 14129 5516.6 43104 

# correspondences 8.69 10.36 6.62 

# matches 2.9 0.83 1.41 

rinlier(feat) 0.32 0.08 0.15 

rinlier(opt) - 0.14 0.52 



Δ(pxfeat, pxproj) - 13.09 5019.7 

success rate 0/52 11/52 15/52 
Table 2 Improved registration accuracy results by applying the Wallis image filter. 

 Within the measured metrics, it can be seen that Wallis filtering improves 
matching and registration results across all the SIFT feature point alternatives. The 
registration success of a SIFT-exclusive algorithmic pipeline, on the other hand, is 
insignificantly affected by image processing. Aside from the statistical measures, it 
was observed that Wallis filtering resulted in a less stable registration procedure 
where some image pairs – easy to register without image modification – fail to 
produce satisfactory results. 
 In the FAST-SIFT combination, the increased contrast response of the salient 
points’ neighbourhood on approximately doubles the retrieved correspondences. 
This leads to an increased success rate for registered image. Despite the observed 
improvement, a large amount of correspondences remain incorrect. This can be 
explained when considering the image content: the rendered image lacks back-
ground information and potentially contains holes in the model. The histograms of 
the synthetic image and the photo are in these cases not compatible. The negative 
impact of this histogram mismatching on the registration is illustrated in Fig. 5.  
 

 

 
Fig. 5 Example of a failed pose estimation using FAST-SIFT after Wallis filtering 
(bottom), compared to the original (top), due to histogram mismatches. 

 Generally, the image processing via Wallis filtering improves the matching 
and, in some cases, is able to retrieve correct external orientation and 
position information for distinctly different images, as shown in Fig. 6. 
 

 
Fig. 6 Prime example of the potential gain in registration accuracy using Wallis 

filtering. The hereby retrieved pose using FAST-SIFT was previously unretrievable. 



 
c) Gamma adaptation 

 
The gamma adaptation has been studied for multiple realisations of γ because a 
single adaptation value does not cover the range of illumination differences. The 
shown experiments cover γ=0.8 (Table 3) and γ=1.3 (Table 4), comparable to Table 
1. 
 

 SIFT MSCR-SIFT FAST-SIFT 

# points 14120 5242.5 59116 

# correspondences 9.27 10.4 7.98 

# matches 2.4 0.79 1.62 

rinlier(feat) 0.26 0.08 0.12 

rinlier(opt) 0.02 0.11 0.46 

Δ(pxfeat, pxproj) 2.81 6.86 19.86 

success rate 0/52 6/52 21/52 
Table 3 Improved registration accuracy results after gamma adaptation (γ=0.8). 

 SIFT MSCR-SIFT FAST-SIFT 

# points 14068 6833.3 74447 

# correspondences 9.23 10.56 5.53 

# matches 3.58 0.63 2.14 

rinlier(feat) 0.39 0.06 0.23 

rinlier(opt) 0.03 0.09 0.54 

Δ(pxfeat, pxproj) 1223.9 32.77 4725.1 

success rate 0/52 3/52 13/52 

Table 4 Improved registration accuracy results after gamma adaptation (γ=1.3). 

 In the conducted experiments, SIFT- and MSCR detectors are negatively affected 
by the gamma adaptation while FAST-based registration has significantly improved. 
The registration accuracy achieved by FAST salient points on the γ=0.8 adaptation 
exceeds every formerly-achieved registration. On the other hand, the registration 
success rate and accuracy drops with increasing gamma values (see Fig. 7). 
Experiments with γ=1.6 only result in a success rate of 9 out of 52 images. 

 

   
photo γ=0.8 γ=1.0 



   
γ=1.3 γ=1.6 γ=1.9 

Fig. 7 Registration results for gamma-adapted FAST-SIFT with different γ values.  

 

5 Discussion 
 
In this article, the accuracy impact of DEM-based altitude estimation and different 
greyscale channel image filters on feature-based image-to-geometry registrations is 
assessed. A challenging outdoor dataset has been chosen for the assessment that 
is affected by large illumination changes between two field campaigns in March 
2015 and September 2015. The photos are acquired with a commonly-available 
Google Nexus smartphone. 
 In the DEM experiments, a significant positioning improvement is observed in 
comparison to the use of pure GPS positioning. The obtained positioning accuracy 
is limited the coarse available resolution of the DEM. This means that the results 
can be improved when higher-resolution DEMs for field locations become publically 
available. On the other hand, the low-resolution, small grids can be parsed in real-
time on mobile devices. DEM-supported positioning also has its limits, as DEM 
queries close to vertically-straight cliff sections commonly result in large errors. 
 The experiments of image processing for the reduction of radiometric variance 
effects provides multiple conclusions: While the Wallis filter resulted in a minor or 
intermediate accuracy improvement for MSCR- and FAST detector alternatives, the 
gamma adaptation has presented the potential for significant accuracy 
improvements for FAST salient point-based registration. Achieving this accuracy 
improvement across different scenarios by selecting γ parameters remains a 
challenge. 
In case studies with less drastic radiometric differences or more accurate initial 
pose information, the application of the Wallis filter yields sufficient improvements to 
co-register natural photographs on the related, textured surface model. 

 

Acknowledgement 

This research is part of the “VOM2MPS” project (Petromax 2, grant number 
234111/E30), funded by the Research Council of Norway, the FORCE consortium 
and SAFARI. 

References 
 

[1]  C. Sweeny, J. Flynn, B. Nuernberger, M. Turk und T. Höllerer, „Efficient 



Computation of Absolute Pose for Gravity-Aware Augmented Reality,“ in s 

International Symposium on Mixed and Augmented Reality (ISMAR), 

Adelaide, Australia, 2015.  

[2]  M. Kröhnert, “Automatic Waterline Extraction from Smartphone Images,” 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, vol. XLI, no. B5, pp. 857-863, 2016.  

[3]  C. Kehl, S. J. Buckley, R. L. Gawthorpe, I. Viola and J. A. Howell, “Direct 

Image-to-Geometry Registration Using Mobile Sensor Data,” ISPRS Annals 

of Photogrammetry, Remote Sensing & Spatial Information, vol. 3, no. 2, pp. 
121-128, 2016.  

[4]  M. Corsini, M. Dellephiane, F. Ganovelli, R. Gherardi, A. Fusiello and R. 

Scopigno, "Fully Automatic Registration of Image Sets on Approximate 

Geometry," International Journal of Computer Vision, vol. 102, no. 1-3, pp. 

91-111, 2013.  

[5]  C. Kehl, S. J. Buckley and J. A. Howell, “Image-to-Geometry Registration on 

Mobile Devices - An Algorithmic Assessment,” in Proceedings of 3D 

NordOst, Berlin, 2015.  

[6]  K. F. Wallis, "Seasonal adjustment and relations between variables," Journal 

of the American Statistical Association, vol. 69, no. 345, pp. 18-31, 1974.  

[7]  P. A. Charles, Digital Video and HDTV: Algorithms and Interfaces, Morgan 
Kaufmann, 2003, p. 260. 

[8]  I. Jazayeri and C. S. Fraser, “Interest operators for feature-based matching in 

close range photogrammetry,” The Photogrammetric Records, vol. 25, no. 

129, pp. 24-41, 2010.  

[9]  C. Kehl, S. J. Buckley, I. Viola, S. Viseur, R. L. Gawthorpe und J. A. Howell, 

„Automatic Illumination-Invariant Image-to-Geometry Registration in 

Outdoor Environments,“ The Photogrammetric Record, 2017 (to be 

published).  

[10]  D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” 

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.  

[11]  H. Bay, T. Tuytelaars and L. Van Gool, "SURF: Speeded Up Robust 
Features," in European Conference on Computer Vision (ECCV), 2006.  

[12]  P.-E. Forssén, “Maximally Stable Colour Regions for Recognition and 

Matching,” in Conference on Computer Vision and Pattern Recognition 

(CVPR), 2007.  

[13]  E. Rosten, R. Porter and T. Drummond, "Faster and Better: A Machine 

Learing Approach to Corner Detection," IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105-119, 2010.  

[14]  G. Caron, A. Dame and E. Marchand, "Direct model based visual tracking and 

pose estimation using mutual information," Image and Vision Computing, vol. 



32, no. 1, pp. 54-63, 2014.  

 

 


