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Abstract: Although mobile image are ubiquitously available, their mapping to 
geometry without user intervention remains a challenge. The image mapping 
to existing geometry is used for texturing and annotation mapping across 

disciplines. The article presents a novel registration extension using mobile 
sensor data and details its full implementation on mobile platforms. The 
algorithm’s accuracy and performance is compared to various existing Image-

to-Geometry techniques in an urban- and geological setting. The achieved 
performance and accuracy demonstrate suitability of registration approach for 
field use, although improvements in GPS accuracy are necessary for some 

application purposes. 

 
1 Introduction 
 
Image-to-Geometry registration is an important step Texture Mapping and 3D 
Model annotations, which is used in applications for hydrocarbon reservoir modeling 
[1], archaeology [2], and city modelling [3]. Detailed models geometry within these 
domains can be captured with structured light, lidar or photogrammetry. Apart from 
the photogrammetric case, photographic colour information is captured separately 
from the geometric model. The photographs need to be accurately registered with 
the 3D geometry, which can be a challenging and time-consuming manual task. 
Real-world photographs are ubiquitously available due to advances in mobile 
imagery. This article addresses the challenge of semi- and fully automatic Image-to-
Geometry registration for unreferenced photographs, focussing particularly on 
mobile device images. The result of this registration is a 3D pose (also known as 
extrinsic camera parameters), containing position and orientation in the coordinate 
system of the 3D geometry. 
 In Image-to-Geometry registration, we can distinguish between manual/semi-
automatic (i.e. user-guided) and fully automatic methods. User-guided methods 
typically extract the pose automatically with manually-defined 2D-3D 
correspondences. The correspondences can be refined iteratively to improve the 
pose accuracy. The largest issue for these methods is the selection of 3D features 
by the user with given tools (e.g. Riegl RiSCAN, MeshLab), due to 3D interaction, 
object occlusion and scale. 



 Automatic pose estimation is typically a multi-stage process, consisting of a 
coarse registration (which can be obtained manually) and a fine registration that 
uses global optimization methods. The accuracy and success of automatic 
registration methods typically rely on good initial estimates, which can be difficult to 
obtain. 
 Our approach is based on the exploration of mobile device technologies, using the 
mobile camera and the range of integrated sensors for localization (e.g. GPS) and 
orientation. These sensors can provide the initial pose approximation for refining 
and automatically registering a captured photograph to a given 3D model. 
 The goal of this study is to propose an extension for automatic Image-to-
Geometry registration using mobile device sensors. The obtained results are 
compared to given (manual) registration techniques with respect to accuracy and 
execution speed, using two case studies. Both registration techniques are 
implemented and tested on tablets and mobile phones. 

 
2 Related Work 
 
The overview of existing 2D-3D registration techniques is split in user-guided 
(manual) and (semi-) automatic approaches. We refer to Nöll et al. [4] for a survey 
on from Augmented Reality (AR) registration techniques. Although pose estimation 
for texture- and annotation mapping and AR seem to have much in common at first, 
the major difference is the inability to calibrate the environment with targets. The 
focus of our study is the mapping of natural scenes, with challenges coming from 
changing environmental conditions and complex real-world object textures. 
 
a) User-Guided Image-to-Geometry Registration 
 
One coarse, traditional approach for manual 2D-3D registration is the definition of 
correlated projection planes with a perspective 3-point algorithm [5]. The algorithm 
is very sensitive to noise and inaccuracies because it retrieves the 3 orientation- 
and 3 position parameters analytically. Generally successful registration procedures 
rely on numerical optimization methods using multiple points. 
 Multi-point based, user-guided 2D-3D registration procedures require the 
definition and correlation of controlpoints between the image and the geometry. 
Improved methods for the adapt user to define such points and correlations are 
rarely considered in the literature, although perceptual problems with 3D orientation 
and correlations are known. 
 After establishing 2D-3D relations the external camera parameters can be inferred 
using analytical methods for a Perspective-n-Point (PnP) solution (i.e. space 
resection and Direct Linear Transform (DLT)) from the correlations. Tsai’s method 
for camera calibration includes the estimation of external camera parameters and 
defines a lower bound of necessary correlations [6]. Using a non-linear solver, such 
as the Levenberg-Marquardt (LM) method, has shown to be a good starting point 
for pose estimation [7]. Recent advances towards closed-form solutions for the PnP 
problem, as shown by Lepetit et al. [8], robustly estimate pose parameters in linear 
time constrains. Common to all user-guided methods is their sensitivity to noise, 
controlpoint- and camera calibration inaccuracies. 
 



b) (Semi-) Automatic Image-to-Geometry Registration 
 
Automatic Image-to-Geometry registration is a multi-stage process of coarse- and 
fine registration. Structure-from-Motion (SfM) techniques reconstruction [9] - and 
Iterative Closest Points (ICP) registration [5] techniques work on small and mid-
scale models. This scale limitation and the large computational effort are unsuitable 
for registering natural landscapes, which is the goal of our study. 
 Mutual Information (MI) [10] [11] can be used to render a 3D scene and visually 
match (and register) the scene with a given real-world photograph, as proposed by 
Corsini et al. [12]. GPU rendering capabilities allow generating scale-independent 
synthetic scenes very rapidly. A challenge of obtaining good initial estimates is 
currently solved via user interaction. Mobile sensors may replace the manual 
intervention in the registration approach. 
 Another method, analogous to manual registration techniques, relies on the point 
matching of 2D features and 3D extremal points [13]. Drawbacks of this approach 
are the complex feature descriptor mapping and the noise sensitivity (both for 3D 
extremal points and 2D image keypoints). 
 Mutual Correspondences (MC) procedures take inspiration from the synthetic 
scene generation of MI 3D registration, the matching of 2D-3D feature points, and 
the numerical computation of external camera parameters. Sottile et al. initially 
proposed minimizing information discrepancies (MI) and the reprojection error of 
feature points [14]. Bodensteiner et al. developed a MC registration technique 
without the information minimization term, focussing on improving the 2D-projected 
3D feature point matching using self-similarity measures [15]. Our research 
approach is comparable to this approach, but focuses on replacing the manual pose 
initialization with mobile sensor data. 
 

3 Contribution 
 
This article presents four contributions to the challenge of Image-to-Geometry 
mapping for texturing purposes. First, we present an extension to a Mutual 
Correspondence approach inspired by Bodensteiner et al. [15] for solving the initial 
pose estimation using mobile sensor data, eliminating the need for user 
intervention. Second, we present a complete implementation of this fully automatic 
Image-to-Geometry workflow on mobile devices, such as smartphones and tablets. 
Third, we compare common manual registration approaches with the novel 
automatic registration workflow in terms of final pose accuracy and processing time. 
Our focus is on geosciences use cases (i.e. urban environments and virtual outcrop 
geology). 
 

4 Mobile Devices and Location-Orientation Sensors 
 
Estimating the initial pose for the image- and geometry alignment can be done 
algorithmically (Corsini et al. use a 3D planar domain decomposition with the 4PCS 
algorithm [12]) or via user interventions (Pintus et al. demand the user selection of 7 
to 12 correspondence pairs [16]). The output is an orientation and a translation, so 
that: 
 



            
 
 Mobile devices are equipped with sensors that measure location, using the Global 
Navigation Satellite System (GNSS), and orientation, using accelerometers and 
magnetometers, in a global reference frame. The location coming from a GNSS can 
be used as translation vector T3 after converting it to the local coordinate system of 
3D model. The rotation matrix is obtained in the coordinate frame of the mobile 
device (see Fig. 1). Because the x-axis is just derived from magnetic- and 
gravitational measurements, the individual rotational components of the matrix have 
different error margins and error sources. A thorough analysis is given by Blum et 
al. [17]. We continue rotational calculations with quaternions due to their compact 
format, easier handling and due to numerical accuracy. A quaternion within the local 
coordinate system is extract using the original quaternion, the mobile device 
orientation and the magnetic declination. The resulting transformation matrix is used 
as a coarse registration matrix. 
 

   
(a) ©Google (b) ©Google (c) 

Fig. 1 Used coordinate systems in the system. The global rotation matrix is given in 
the mobile coordinate system (a), where the y-axis points to the magnetic north 
(top-edge of the device in native orientation), the z-axis points away from the center 
of gravity (out of the device screen), and the x-axis is obtained as yz-axis cross 
product (b). The used coordinate system aligns with common geographic system, 
with the xy-plane being ground-parallel while the z-axis delimits altitudes (c). 

 
5 Automatic Image-to-Geometry Mobile Registration using Mutual 
Correspondences 
 
The MC input is given by the mobile photograph, a textured 3D model, and the 
calibrated camera model including the focal length of the view. As discussed by 
Bodensteiner et al. [15], a coloured point set can also be used for the registration, 
though visual saliency within the coloured point set demands a more complex 
processing of keypoint matches. Subsequently, the 3D scene is rendered using the 
coarse alignment transformation matrix as view matrix. Then, keypoints are 
extracted from the synthetic- and real-world image using SIFT- or SURF feature 
descriptors, and matches using a RANSAC approach. The matches keypoints of 
the synthetic image are used as a starting point for Raycasting in order to obtain 
their 3D correspondence points. We give preference to Raycasting over the depth 
buffer values due to the limited depth mapping accuracy. The 3D raycasted 
intersections of the model are subsequently related to the 2D keypoints of the 



photo. Taken the undistorted photo keypoint coordinates and the 3D pointset, we 
can use established numerical optimization methods such as Levenberg-Marquardt 
(LM) and EPnP (Efficient PnP) to determine the final pose. The workflow is shown 
in Fig. 2. 
 

 
Fig. 2 Image-to-Geometry algorithm, based on mobile data (left image side), Mutual 

Correspondence (mid-part) and PnP pose estimation (right side). 

6 Mobile Platform Implementation 
 
The presented Image-to-Geometry approach is implemented on Google’s Android 
platform. Android applications are based on Java, running in an adapted Java 
Virtual Machine (JVM). Additional computational packages for graphics and 
computer vision are compiled as C++ libraries and communicate with the Java 
application through Java Native Interface (JNI) wrappers. 
 We use the wrapped OpenSceneGraph package “osgAndroid”

1
 for graphics, 

giving access to various geometry- and image formats. Additionally, it provides 
Level-of-Detail Out-of-Core functionality for rendering very large models. The 
application also interfaces OpenCV for the tasks of pose estimation and point 
reprojection. A local package provides access to SIFT and SURF implementations. 
 Mobile devices have relatively powerful processors and network interfaces, but 
the limited local memory size prohibits using large models. Moreover, because of 
the JVM-managed memory, we encountered situations where large data failed to 
load, as the JVM disposed loaded data during the computation. Therefore, some 
parts of the algorithm are implemented entirely in C++ to circumvent the memory 
restrictions. 

 
7 Method Assessment based on Geoscience Use Cases 
 

a) Urban Environment Use Case – Tyske Bryggen / Bergen / Norway 
 
Tyske Bryggen (referred to as “Bryggen”) is a late-medieval building complex of the 
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Hanse at the port of Bergen. Originally conceived as a trading post for fish and 
goods, it is nowadays used for restaurants and (traditional) shops (see Fig. 3). The 
dataset was collected using a Riegl LMS-Z420i Terrestrial Laser Scanner (TLS) and 
a mounted Nikon camera for the image texture. The mounting serves as a baseline 
measurement for comparing different registration techniques. 

 

 
Fig. 3 Overview of Tyske Bryggen as rendering. 3D markers are highlighted in 

green (a). The model is rendered from an initial position with very few overlap (b, 
synthetic image left, photograph right). 

 

 
Fig. 4 Re-occuring patterns are an exemplary challenge when establishing 

correspondences in real-world urban datasets. 

 
 An automatic registration of additional photographs with this dataset is challenging 
due to re-occurring patterns within the image (see Fig. 4). Fig. 5 shows an accuracy 
comparison between several automatic and manual methods. 
 For automatic registration assessment on mobile devices, we used the Google 
Nexus 5 smartphone and the NVIDIA Shield Tablet for comparison. The current 
processing pipeline of our models stores high-density geometry and JPEG-
compressed images, where the image decompression is done in the rendering 
phase. While the graphics-targeted NVIDIA tablet supports OpenGL 3.2 profile 
functions (including DCT decompression), common smartphones and tablets only 
support Embedded OpenGL 2 profile (without DCT decompression). Therefore, we 



used different configurations of geometry and imagery during the runtime 
assessment (see Table 1 for average runtime measurements). 
 

 
Fig. 5 Chart giving the average error over 2 Bryggen, compared to the scanner 

mounting, for vectorial and angular part of rotation quaternion and positioning error 
(translational). 

 
Table 1 Runtime experiments for the automatic registration pipline on smart devices 

with varying textures and geometries (full model ~3.9 mil. triangles). 

 
b) Geological Use Case – Mam Tor / Peak District / United Kingdom 

 
Mam Tor is a hillside outcrop representing our VOG target application. Outcrop 
models are used as geological study analogues for subsurface oil- and gas 
reservoirs. Geologists can map sediment depositions in the field from surface-
accessible outcrops, which serve as input for geostatistics (i.e. Multi-Point Statstics 
(MPS) to model subsurface reservoirs. This intended use case also explains the 
focus on mobile implementations: in urban environments, the workflow can be 
realized as a web-application that is easily accessible to mobile platforms through 
WiFi. In contrast to that, geologists in the field rarely have WiFi access, which 
means that data and processing need to be realized on the smartphone or tablet 
itself. 
 The given pictures (see example Fig. 6) are taken in the field, independently from 
the scanner, which is why we take the accuracy of the manual registration as 
baseline for the study. Fig. 7 shows the rotational and translational deviation of the 



automatic matching and the initial mobile parameters. Table 2 shows the average 
runtime for the image registration of 12 images. 
 

 
Fig. 6 Overview of the Mam Tor use case, showing the real-world geologic mobile 
photographs (top row) and the corresponding Virtual Outcrop rendering from the 

(error-corrected) GPS-orientation logged initial pose estimate (bottom row). 

 
Fig. 7 Chart giving the average error over 9 image of Mam Tor, compared to a 

manual registration technique, for vectorial and angular part of rotation quaternion 
and positioning error (translational). 

 

 
Table 2 Timings as in table 1, for Mam Tor dataset (full size: ~60 mil. triangles) 

 



8 Discussion 
 
As observed in the “Bryggen” case, we are often able to retrieve a reasonable pose 
with most algorithms from a rather generic starting point, given that the object of 
interest is in view. The data suggest that a generic non-linear LM optimization 
without parameter initialization fails when getting stuck in local optima of the 6D 
parameter space. This can be avoided by choosing a reasonable starting point for 
each parameter. The automatic registration procedure delivers an accurate final 
pose with the smallest errors in parameter space. This is an advantage over manual 
registration methods, where the 2D/3D perception of the user reaches natural 
accuracy limits. Despite this, image-based registration techniques can fail in urban 
environments due to re-occurring patterns and occluding pedestrians. 
 In the geologic use case, the presented images were captured in the same 
acquisition campaign as the textured 3D model, which means that illumination- and 
weather conditions were comparably constant. Height-corrected mobile sensor data 
are sufficiently accurate to automatically obtain a correct position and orientation in 
this setting. On the other hand, the results also make the large deviation of mobile 
sensor data and actual position/orientation apparent: Particularly comparing the 
GPS data with the real position yield an average deviation of 52.42 metre in 
longitude, 17.56 metre in latitude and 8.86 metre in altitude. Moreover, our mobile 
positions were obtained with an external GPS because initial experiments in a 
controlled environment have show altitude deviations of the mobile device build-in 
GPS of      up to      (in line with available literature [17]). 
 Registering images with a textured 3D model using the presented algorithm takes 
between 1 minute (tablet) and 5 minutes (phone). This makes the presented Image-
to-Geometry procedure very well applicable to field use. The energy efficiency of 
the implementation can be improved, as the 3D rendering and the large image 
dimensions demand a certain processing power. During the experiments, the 
device batteries emptied in 1 hour. Still, the results show that the automatic, visual 
registration technique can even be realized on smartphones with limited rendering 
capabilities. In the future, we focus on assessing the impact of different ambient 
illumination conditions on the registration procedure. 
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