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Abstract: The broad availability of large datasets for decision-making, as well 
as current technological trends in large-area projection systems and intelligent 
interaction devices pose new challenges for designing Virtual Environments 
(VEs) for decision-making processes. This paper addresses three main 
challenges for modern VEs in the context of decision-making: the render 
organisation for large-scale projection systems, the scene navigation by a 
group of concurrent users, and the in-place modification of rendered datasets 
by concurrent users. Distributed Rendering, Collaborative User Navigation 
and Collaborative Scene Manipulation are my proposed approaches for 
extending VEs to work in modern decision-making setups. 

 
1 Introduction 
 
Visualising large-scale datasets is nowadays commonly applied in decision-making 
processes across many domains, such as GIS and medical diagnosis. In this 
environment, user groups observe and explore interactive 3D scenes showing their 
domain-specific data. 
 Although current visualisation systems are steered towards highlighting important 
information, target user groups continue to push demands on such systems. Our 
research group highlights three areas of improvement that emerged from recent 
studies with water management experts [1], which are discussed in this paper. First, 
larger projection- and screen setups and the support of visualisations on such 
devices create challenges for a distributed render organisation. Secondly, decision-
making demands intuitive and scalable navigation interfaces that allow multiple 
users to participate in discussions. Lastly, interaction interfaces that allow 
concurrent user groups to modify (i.e. annotate) large models inside the visible 
scene is a major demand of experts across application domains. 
 The referred research on this topic is based on the work of de Haan [2], who 
developed a technical as well as cognitive framework for user interaction. The 
framework binds the tasks of “Rendering” and “Interaction”, so that rendering tasks 
relate to user actions. Technically, the framework is a conglomerate of 
StateStreams, StreamMachines and Application setups. The framework is well-
applicable in small-scale Virtual Environments (VEs). 
 This approach is extended to facilitate large-scene rendering and smooth 
navigation and interaction by medium-sized user groups. Hence, I introduce the 
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following techniques: Projection-aware Distributed Rendering, Collaborative User 
Navigation and a new approach for Collaborative Scene Manipulation. 
 The approach and the developed techniques are validated using the AHN-2 point 
cloud dataset for large-scale rendering tests, and smaller, artificial point-sampled 
geometry for validating the navigation and interaction. 

 
2 Related Work 
 
Challenges in the design and development of decision-making support tools often 
arise from expert user demands, who are working with the tools on daily basis. One 
such user demand is the support for modern, large 2D displays, multi-display 
setups, as well as 2D-/3D stereo projector systems, across domains [3] [4] [5]. 
Rendering on screens at such scale and resolution results in more expensive 
computations. This can lead up to a point where the visualization becomes non-
interactive, even when using modern Level-of-Detail and out-of-core rendering 
methods [6] [7]. Issues according to render speed can be commonly overcome via 
Distributed Rendering. The open issue with current Distributed Rendering 
approaches, such as Chromium [8] and Equalizer [9], is their limited applicability to 
non-planar projection surfaces, which we address in our approach. 
 Another challenge for decision-making support tools that emerges from user 
demands is the support for novel interaction devices. An increasing number of 
haptic- (joysticks, Wiimote [10]) and non-haptic (Kinect, LeapMotion) devices 
became available in recent years. Their importance for collaborative 3D VE’s has 
already been proven in earlier research stages [11]. We focus on using these 
devices in a consistent manner for 3D scene, 6 Degree-of-Freedom (DoF) 
navigation. Early VE’s for data exploration and decision-making, such as VRmeer 
[12] and i3D [13], assume a small number of users navigating the virtual world and 
being physically close to the projection device. A first approach for distant (i.e. 
remote) navigation is VRPN [14]. In this framework, device classes abstract a 

collection of input devices. Due to our focus on navigation, we provide consistent 
abstractions that allow 6-DoF navigation across the range of devices. We 
furthermore extend the approach by linking devices and function classes. 
 A last challenge we approach is the manipulation of objects in the visible scene by 
multiple users. Current decision-making support tools and former multiuser-VE’s, 
such as DIVE [15], annotate and modify objects via texture images. This approach 
can be very memory-intensive for large models. Furthermore, it requires texture 
coordinates, which do not exist for all object representations (e.g. point-based 
datasets). 

 
3 Projection-aware Distributed Rendering 

 

 Distributed, projection-aware, synchronised rendering is introduced to approach 
the diverse, possibly compute-intense demands of large-scale VEs. Hereby, each 
render client of the network, virtually connected to one output device (i.e. screen or 
projector), works on a dedicated part of the scene. Each client has a dedicated 
database connection to enable independent data requests. The master node 

distributes the interaction commands. It also composes the individual image into 
one framebuffer output, if required. The clients can be synchronized via timestamp 



or frame number. The choice of the synchronisation method depends on the 
allowed lag between the render devices. When rendering stereoscopic projections, 
large lags lead to visual errors in the stereo-composition. The acceptable lag for 
composing a stereo image depends on projection-device specifics, as well as on 
the rendered scene. 
 For multi-projector systems, the master manages the view matrix update. This 
matrix is transferred to the clients, which multiply the incoming matrix with a local 
screen matrix. The local screen matrix incorporates the offset position (for planar 
projections) and radial offsets and shears (for cylindrical projections) for the 
connected projection device. The matrix composition is explained in Eq.1 and Eq.2. 
 
Planar View Matrix and Projection: 

𝑀𝑓𝑖𝑛𝑎𝑙 = 𝑀𝑝𝑙𝑎𝑛𝑎𝑟_𝑜𝑓𝑓𝑠𝑒𝑡 ∙ 𝑀ℎ𝑒𝑎𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∙ 𝑀𝑒𝑦𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∙ 𝑀𝑔𝑙𝑜𝑏𝑎𝑙_𝑣𝑖𝑒𝑤 (1.1) 

𝑙𝑒𝑓𝑡 =  𝐶𝑋𝑠𝑐𝑟𝑒𝑒𝑛
−

𝑤𝑖𝑑𝑡ℎ

2
 

(1.2) 

𝑟𝑖𝑔ℎ𝑡 =  𝐶𝑥𝑠𝑐𝑟𝑒𝑒𝑛
+

𝑤𝑖𝑑𝑡ℎ

2
 

(1.3) 

𝑡𝑜𝑝 =  𝐶𝑦𝑠𝑐𝑟𝑒𝑒𝑛
+

ℎ𝑒𝑖𝑔ℎ𝑡

2
 

(1.4) 

𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐶𝑦𝑠𝑐𝑟𝑒𝑒𝑛
−

ℎ𝑒𝑖𝑔ℎ𝑡

2
 

(1.5) 

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚, 𝑛𝑒𝑎𝑟, 𝑓𝑎𝑟) ∙ 𝑀𝑒𝑦𝑒_𝑜𝑓𝑓𝑠𝑒𝑡 (1.6) 

 
Cylindrical View Matrix and Projection: 

𝑀𝑓𝑖𝑛𝑎𝑙 = 𝑀𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙_𝑜𝑓𝑓𝑠𝑒𝑡 ∙ 𝑀ℎ𝑒𝑎𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∙ 𝑀𝑒𝑦𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∙ 𝑀𝑔𝑙𝑜𝑏𝑎𝑙_𝑣𝑖𝑒𝑤 (2.1) 

𝑙𝑒𝑓𝑡 =  𝐶𝑋𝑠𝑐𝑟𝑒𝑒𝑛
−

𝑤𝑖𝑑𝑡ℎ ∙ 𝑠ℎ𝑒𝑒𝑟𝑥

2
 

(2.2) 

𝑟𝑖𝑔ℎ𝑡 =  𝐶𝑥𝑠𝑐𝑟𝑒𝑒𝑛
+

𝑤𝑖𝑑𝑡ℎ ∙ 𝑠ℎ𝑒𝑒𝑟𝑥

2
 

(2.3) 

𝑡𝑜𝑝 =  𝐶𝑦𝑠𝑐𝑟𝑒𝑒𝑛
+

ℎ𝑒𝑖𝑔ℎ𝑡 ∙ 𝑠ℎ𝑒𝑒𝑟𝑦

2
 

(2.4) 

𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐶𝑦𝑠𝑐𝑟𝑒𝑒𝑛
−

ℎ𝑒𝑖𝑔ℎ𝑡 ∙ 𝑠ℎ𝑒𝑒𝑟𝑦

2
 

(2.5) 

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚, 𝑛𝑒𝑎𝑟, 𝑓𝑎𝑟) ∙ 𝑀𝑒𝑦𝑒_𝑜𝑓𝑓𝑠𝑒𝑡 (2.6) 

 

 
 The developed network protocol has a simple layout that consists of message 
length, message type (in this case: frame number) and the data. It can be send as 
byte format or plaintext to generic composition server applications. 

 
4 Collaborative User Navigation 
 
Next to the large-scale rendering, it should be possible for multiple, concurrent 
users to navigate inside the rendered scene. That commonly demands the 
presence of the users at the respective render device. 
 In order to overcome this restriction, the collaborative navigation approach allows 
the remote navigation of the scene via heterogeneous devices. The approach is 



based on function abstraction and device abstraction. The navigation functions are 
abstracted according to the following class scheme: 

 Triggers: event-based functions 

 Positioning: camera positioning at random points 

 Movement: camera positioning according to a continuous function 

 Orientation: affine transformation-based model movement 

  
This abstraction allows, for example, to implement- and switch easily between 
camera settings of different users. It continues at device level, where one of the 
following classes is tied to each physical interaction object: 

 Discrete Navigation: movement and orientation via trigger-like objects (e.g. 
buttons, keys) 

 Continuous Navigation: movement and orientation on axis-based objects 

(e.g. hats, throttles, sticks, gestures) 

 Discrete Trigger: connecting trigger-like objects with switch-functions  

 Continuous Trigger: connecting axis-based objects with scale-functions 

(e.g. transfer functions, colour range) 
 
 A mapping example of physical object, interaction class and function class is 
given in Figure 1, for a haptic- as well as non-haptic device. 

 

 

 
 

 

Figure 1 Interaction mapping examples with our framework, shown on haptic (a) and 
non-haptic (b) devices 

 The interaction clients, being connected to the particular device, are implemented 
in Python to simplify the framework’s extension. It further allows platform-
independent usage. The interaction server classes are available in native C++ and 
native Python, to be interfaced in generic render engines. The network protocol 
layout of section 3 was adapted to support the navigation commands. The 
synchronization of (dis)appearing devices during runtime is done via broadcasting 
the current view-matrix to each device. The server accumulates incoming, 
difference-coded view matrices of each device during rendering. 

 
5 Collaborative Scene Manipulation 
 
The collaborative scene manipulation is a key element for decentralized decision-



making support tools. It allows multiple users to annotate and adapt the scene on-
the-fly. Each user performs his operations locally in independent views, while the 
render master collects all modifications and renders them in the global scene. 
 One challenge is the transmission of the model’s geometry to each client. The 
aforementioned, large datasets are disseminated as simplified versions to reduce 
the stress on low-performance devices (e.g. laptops, tablets). For the experiments, 
we apply random point re-sampling as a pre-processing step to the rendering. We 
forward the interested reader to [16] [17] for more simplification methods. 
 In the next step, after marking and modifying the area, we need to adapt the 
global, non-simplified dataset accordingly. For this, we extend an initial approach for 
2D area marking [7] that allows rendering exclusion of parts of the dataset, height 
adaptations and colouring. Generally, we combine a certain operation with a spatial 
constraint in order to modify the dataset. The first extension uses spherical markers 
for 3D annotation, for which their centres, radii and colour are stored. These data 
are organised as a texture, and subsequently evaluated as implicit function by a 
GPU shader to colour the dataset vertices. An example is given in Figure 2.  

 

 
Figure 2 Example rendering for sphere-based area marking 

 
A second step uses object-oriented bounding boxes (OOBBs) for marking. Hence, 
each box’ centre as well as its world-to-object transformation matrix is stored, in 
addition to its colour and dimensions. The shader transforms the box centre and 
each scene vertex into local coordinates using the transposed transformation 
matrix. Then, the GPU evaluates the box’ implicit function for colouring each vertex. 
The concept is shown in Figure 3, an example rendering is given in Figure 4. 
 



 
Figure 3 Sketch of box evaluation for area marking 

 
Figure 4 Example rendering for box-based area marking 

 
A third, proposed extension handles 4-sided prisms. In this case, a single centre- 
and transformation matrix is not sufficient for the inside/outside-check. We therefore 
treat them as closed meshes, for which we store for each surface: 

 3 corner vertices 

 their counter-clockwise-oriented indices 

 their transformation matrix into a local coordinate system 
Inside the GPU shader, each scene vertex is transformed with each plane’s matrix 
and checked if the vertex is inside the volume of the combined implicit function.  
 
6 Technical Results 
 
The Distributed rendering is tested on parts of the Dutch AHN-2 (www.ahn.nl) multi-
terabyte point dataset. The test configuration included 3 render clients, of which one 
was acting as master. The scene, an urban environment covering 5km by 12.5km 
(62.5 km², around 55 GB in total), was rendered in single-view and stereoscopic 
view, using planar- and cylindrical projections. In our test, each client was 
connected to an individual screen, without final frame composition. The render 
clients’ hardware was as follows: 

 Client 1/Master: Intel Xeon 6 x 3.2 GHz (12 processing elements (PE) in 
Hyperthreading (HT) -mode), 16 GB memory, NVIDIA GeForce GTX 680 

 Client 2: Intel Xeon 6 x 3.2 GHz (12 PE’s using HT), 16 GB memory, 
NVIDIA Quadro K4000 

http://www.ahn.nl/


 Client 3: Intel Xeon 4 x 2 GHz, 8GB memory, NVIDIA GeForce GTX 480 
 The different device capabilities led to asynchronous render times between the 
clients. Hence, errors occurred in the frame matching when using a timestamp as 
mean of synchronisation. Using the frame number for synchronisation reduced the 
rendering speed from 40 frames per second on average to 16 frames per second, 
with an allowed lag of 3 frames. On the other hand, the visual result of the frames is 
homogeneous, which gives an acceptable frame matching, and also allows a stereo 
frame composition. An example rendering for cylindrical projections is given in 
Figure 5. 
 

 
Figure 5 Example for Distributed Rendering of a cylindrical projection on a 3-

display screen setup 

 The approach for collaborative user navigation received positive feedback in 
recent demonstrations. Two particular advantages of this interaction framework are 
the ability to steer the visual via multiple devices connected to one client, as well as 
the usage of several clients at the same time. The gained platform independence is 
important. As the render solutions commonly run on Linux-platforms, most users 
outside the informatics community were formerly hesitant to use in daily practice. 
Thus, decision-makers are more willing to navigate via Microsoft Windows while 
benefiting from advances in novel rendering algorithms. 
 The scene manipulation algorithms are currently only tested on a smaller, artificial 
dataset due to the necessary simplification pre-prepocessing. As the rendering is 
executed in screen space, the results can be generalized to larger datasets. Figure 
6 (left) shows performance figures on the spherical area marking. As can be seen, 
we experience significant performance drops at around 30 sphere checks. This 
behaviour can be improved by ordering the markers in spatial hierarchies, as in 
Kehl et al. [7]. Figure 6 (right) shows performance figures for OOBB markers. Here, 
a significant performance drop is observed at 7 markers, due to the more complex 
inclusion check. The prism-based marking needs further refinement to be applied in 
real-time. In general, although majorly applying colour annotation as mean of scene 
modification in our tests, further operations such as object cutting and displacement 
can simply be implemented using our modification approach. The measurement 
systems was an Intel i7 920 x4 HT processor @ 2.66 GHz, 8 GB memory and an 
AMD HD 4850 X2 graphics adapter (only one GPU used). 
 



  
Figure 6 Measurements of the rendering speed [frames per second] for sphere-

based (left) and box-based (right) area marking 

 

7 Discussion 
 
The techniques currently help water boards and hydrologists in the Netherlands to 
explore flood scenarios, occurring due to massive rainfall in urban environments 
and levee breaches in coastal areas. Projection setups that are currently used for 
this purpose include the 3D theatre in Groningen, a 5m-by-2.5m cylindrical wall 
project, large-scale multi-touch tables in offices and a PowerWall planar projection 
in the VRLab of the TU Delft. Furthermore, a large PowerWall setup for flood 
visualisation is used in the Delft Science Center and the “Watersnoodmuseum” in 
Zeeland for the purpose of public education. 
 The Collaborative User Navigation- and Scene Manipulation allow water experts 
to interactively communicate and plan flood protection measurements during routine 
meetings and workshops in the water-management domain. The 2.5D annotation 
version is already implemented in the 3di software package, and we are looking 
forward to see this annotation technique becomes common practice in the future. 
The approach has also further use in other domains of decision-making, such as oil- 
and gas reservoir modelling, where 3D data annotations form the basis of the 
reservoir segmentation, and pre-operative planning in hospitals, where medical 
diagnoses are based on scanned object segmentations. 

 
8 Future Work 
 
The presented techniques are part of a continuous research effort towards a 
consistent Visualisation- and Interaction framework for flexible communication 
settings (with respect to projection, render- and interaction devices). 
 The support for touch-based interaction devices is a demand emerging from 
recent studies, which we will integrate in our collaborative navigation. This is 
challenging to model because, in contrast to keyboard, joysticks and non-haptic 
devices, touch-screens commonly demand a visual reference surface to form 
navigation commands. 
 The technique of collaborative scene modification still offers various challenges. 
The data delivery of large-scale models as small data packages to client devices 



still requires further attention. Although numerous techniques exist for data 
simplification, we will investigate the delivery of the data to the client devices via 
out-of-core data structures, such as they are delivered to the server application. As 
explained in detail in the technique discussions (section 6), we will devote further 
research in improving the prism-based annotation by simplifying the spatial 
constraint and avoiding performance bottlenecks. One further extension is 
management of the marker objects within texture-organised spatial hierarchies. 
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