
Distributed Rendering and Collaborative User Navigation-
and Scene Manipulation

Christian Kehl

University of Amsterdam,

Science Park 904, NL-1098XH Amsterdam
eMail: c.kehl@uva.nl | christian-kehl@web.de
URL: http://graphics.tudelft.nl/christian-kehl

Abstract: The broad availability of large datasets for decision-making, as well
as current technological trends in large-area projection systems and intelligent
interaction devices pose new challenges for designing Virtual Environments
(VEs) for decision-making processes. This paper addresses three main
challenges for modern VEs in the context of decision-making: the render
organisation for large-scale projection systems, the scene navigation by a
group of concurrent users, and the in-place modification of rendered datasets
by concurrent users. Distributed Rendering, Collaborative User Navigation
and Collaborative Scene Manipulation are my proposed approaches for
extending VEs to work in modern decision-making setups.

1 Introduction

Visualising large-scale datasets is nowadays commonly applied in decision-making
processes across many domains, such as GIS and medical diagnosis. In this
environment, user groups observe and explore interactive 3D scenes showing their
domain-specific data.
 Although current visualisation systems are steered towards highlighting important
information, target user groups continue to push demands on such systems. Our
research group highlights three areas of improvement that emerged from recent
studies with water management experts [1], which are discussed in this paper. First,
larger projection- and screen setups and the support of visualisations on such
devices create challenges for a distributed render organisation. Secondly, decision-
making demands intuitive and scalable navigation interfaces that allow multiple
users to participate in discussions. Lastly, interaction interfaces that allow
concurrent user groups to modify (i.e. annotate) large models inside the visible
scene is a major demand of experts across application domains.
 The referred research on this topic is based on the work of de Haan [2], who
developed a technical as well as cognitive framework for user interaction. The
framework binds the tasks of “Rendering” and “Interaction”, so that rendering tasks
relate to user actions. Technically, the framework is a conglomerate of
StateStreams, StreamMachines and Application setups. The framework is well-
applicable in small-scale Virtual Environments (VEs).
 This approach is extended to facilitate large-scene rendering and smooth
navigation and interaction by medium-sized user groups. Hence, I introduce the

mailto:c.kehl@uva.nl
mailto:christian-kehl@web.de

following techniques: Projection-aware Distributed Rendering, Collaborative User
Navigation and a new approach for Collaborative Scene Manipulation.
 The approach and the developed techniques are validated using the AHN-2 point
cloud dataset for large-scale rendering tests, and smaller, artificial point-sampled
geometry for validating the navigation and interaction.

2 Related Work

Challenges in the design and development of decision-making support tools often
arise from expert user demands, who are working with the tools on daily basis. One
such user demand is the support for modern, large 2D displays, multi-display
setups, as well as 2D-/3D stereo projector systems, across domains [3] [4] [5].
Rendering on screens at such scale and resolution results in more expensive
computations. This can lead up to a point where the visualization becomes non-
interactive, even when using modern Level-of-Detail and out-of-core rendering
methods [6] [7]. Issues according to render speed can be commonly overcome via
Distributed Rendering. The open issue with current Distributed Rendering
approaches, such as Chromium [8] and Equalizer [9], is their limited applicability to
non-planar projection surfaces, which we address in our approach.
 Another challenge for decision-making support tools that emerges from user
demands is the support for novel interaction devices. An increasing number of
haptic- (joysticks, Wiimote [10]) and non-haptic (Kinect, LeapMotion) devices
became available in recent years. Their importance for collaborative 3D VE’s has
already been proven in earlier research stages [11]. We focus on using these
devices in a consistent manner for 3D scene, 6 Degree-of-Freedom (DoF)
navigation. Early VE’s for data exploration and decision-making, such as VRmeer
[12] and i3D [13], assume a small number of users navigating the virtual world and
being physically close to the projection device. A first approach for distant (i.e.
remote) navigation is VRPN [14]. In this framework, device classes abstract a

collection of input devices. Due to our focus on navigation, we provide consistent
abstractions that allow 6-DoF navigation across the range of devices. We
furthermore extend the approach by linking devices and function classes.
 A last challenge we approach is the manipulation of objects in the visible scene by
multiple users. Current decision-making support tools and former multiuser-VE’s,
such as DIVE [15], annotate and modify objects via texture images. This approach
can be very memory-intensive for large models. Furthermore, it requires texture
coordinates, which do not exist for all object representations (e.g. point-based
datasets).

3 Projection-aware Distributed Rendering

 Distributed, projection-aware, synchronised rendering is introduced to approach
the diverse, possibly compute-intense demands of large-scale VEs. Hereby, each
render client of the network, virtually connected to one output device (i.e. screen or
projector), works on a dedicated part of the scene. Each client has a dedicated
database connection to enable independent data requests. The master node

distributes the interaction commands. It also composes the individual image into
one framebuffer output, if required. The clients can be synchronized via timestamp

or frame number. The choice of the synchronisation method depends on the
allowed lag between the render devices. When rendering stereoscopic projections,
large lags lead to visual errors in the stereo-composition. The acceptable lag for
composing a stereo image depends on projection-device specifics, as well as on
the rendered scene.
 For multi-projector systems, the master manages the view matrix update. This
matrix is transferred to the clients, which multiply the incoming matrix with a local
screen matrix. The local screen matrix incorporates the offset position (for planar
projections) and radial offsets and shears (for cylindrical projections) for the
connected projection device. The matrix composition is explained in Eq.1 and Eq.2.

Planar View Matrix and Projection:

𝑀𝑓𝑖𝑛𝑎𝑙 = 𝑀𝑝𝑙𝑎𝑛𝑎𝑟_𝑜𝑓𝑓𝑠𝑒𝑡 ∙ 𝑀ℎ𝑒𝑎𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∙ 𝑀𝑒𝑦𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∙ 𝑀𝑔𝑙𝑜𝑏𝑎𝑙_𝑣𝑖𝑒𝑤 (1.1)

𝑙𝑒𝑓𝑡 = 𝐶𝑋𝑠𝑐𝑟𝑒𝑒𝑛
−

𝑤𝑖𝑑𝑡ℎ

2

(1.2)

𝑟𝑖𝑔ℎ𝑡 = 𝐶𝑥𝑠𝑐𝑟𝑒𝑒𝑛
+

𝑤𝑖𝑑𝑡ℎ

2

(1.3)

𝑡𝑜𝑝 = 𝐶𝑦𝑠𝑐𝑟𝑒𝑒𝑛
+

ℎ𝑒𝑖𝑔ℎ𝑡

2

(1.4)

𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐶𝑦𝑠𝑐𝑟𝑒𝑒𝑛
−

ℎ𝑒𝑖𝑔ℎ𝑡

2

(1.5)

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚, 𝑛𝑒𝑎𝑟, 𝑓𝑎𝑟) ∙ 𝑀𝑒𝑦𝑒_𝑜𝑓𝑓𝑠𝑒𝑡 (1.6)

Cylindrical View Matrix and Projection:

𝑀𝑓𝑖𝑛𝑎𝑙 = 𝑀𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙_𝑜𝑓𝑓𝑠𝑒𝑡 ∙ 𝑀ℎ𝑒𝑎𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∙ 𝑀𝑒𝑦𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∙ 𝑀𝑔𝑙𝑜𝑏𝑎𝑙_𝑣𝑖𝑒𝑤 (2.1)

𝑙𝑒𝑓𝑡 = 𝐶𝑋𝑠𝑐𝑟𝑒𝑒𝑛
−

𝑤𝑖𝑑𝑡ℎ ∙ 𝑠ℎ𝑒𝑒𝑟𝑥

2

(2.2)

𝑟𝑖𝑔ℎ𝑡 = 𝐶𝑥𝑠𝑐𝑟𝑒𝑒𝑛
+

𝑤𝑖𝑑𝑡ℎ ∙ 𝑠ℎ𝑒𝑒𝑟𝑥

2

(2.3)

𝑡𝑜𝑝 = 𝐶𝑦𝑠𝑐𝑟𝑒𝑒𝑛
+

ℎ𝑒𝑖𝑔ℎ𝑡 ∙ 𝑠ℎ𝑒𝑒𝑟𝑦

2

(2.4)

𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐶𝑦𝑠𝑐𝑟𝑒𝑒𝑛
−

ℎ𝑒𝑖𝑔ℎ𝑡 ∙ 𝑠ℎ𝑒𝑒𝑟𝑦

2

(2.5)

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚, 𝑛𝑒𝑎𝑟, 𝑓𝑎𝑟) ∙ 𝑀𝑒𝑦𝑒_𝑜𝑓𝑓𝑠𝑒𝑡 (2.6)

 The developed network protocol has a simple layout that consists of message
length, message type (in this case: frame number) and the data. It can be send as
byte format or plaintext to generic composition server applications.

4 Collaborative User Navigation

Next to the large-scale rendering, it should be possible for multiple, concurrent
users to navigate inside the rendered scene. That commonly demands the
presence of the users at the respective render device.
 In order to overcome this restriction, the collaborative navigation approach allows
the remote navigation of the scene via heterogeneous devices. The approach is

based on function abstraction and device abstraction. The navigation functions are
abstracted according to the following class scheme:

 Triggers: event-based functions

 Positioning: camera positioning at random points

 Movement: camera positioning according to a continuous function

 Orientation: affine transformation-based model movement

This abstraction allows, for example, to implement- and switch easily between
camera settings of different users. It continues at device level, where one of the
following classes is tied to each physical interaction object:

 Discrete Navigation: movement and orientation via trigger-like objects (e.g.
buttons, keys)

 Continuous Navigation: movement and orientation on axis-based objects

(e.g. hats, throttles, sticks, gestures)

 Discrete Trigger: connecting trigger-like objects with switch-functions

 Continuous Trigger: connecting axis-based objects with scale-functions

(e.g. transfer functions, colour range)

 A mapping example of physical object, interaction class and function class is
given in Figure 1, for a haptic- as well as non-haptic device.

Figure 1 Interaction mapping examples with our framework, shown on haptic (a) and
non-haptic (b) devices

 The interaction clients, being connected to the particular device, are implemented
in Python to simplify the framework’s extension. It further allows platform-
independent usage. The interaction server classes are available in native C++ and
native Python, to be interfaced in generic render engines. The network protocol
layout of section 3 was adapted to support the navigation commands. The
synchronization of (dis)appearing devices during runtime is done via broadcasting
the current view-matrix to each device. The server accumulates incoming,
difference-coded view matrices of each device during rendering.

5 Collaborative Scene Manipulation

The collaborative scene manipulation is a key element for decentralized decision-

making support tools. It allows multiple users to annotate and adapt the scene on-
the-fly. Each user performs his operations locally in independent views, while the
render master collects all modifications and renders them in the global scene.
 One challenge is the transmission of the model’s geometry to each client. The
aforementioned, large datasets are disseminated as simplified versions to reduce
the stress on low-performance devices (e.g. laptops, tablets). For the experiments,
we apply random point re-sampling as a pre-processing step to the rendering. We
forward the interested reader to [16] [17] for more simplification methods.
 In the next step, after marking and modifying the area, we need to adapt the
global, non-simplified dataset accordingly. For this, we extend an initial approach for
2D area marking [7] that allows rendering exclusion of parts of the dataset, height
adaptations and colouring. Generally, we combine a certain operation with a spatial
constraint in order to modify the dataset. The first extension uses spherical markers
for 3D annotation, for which their centres, radii and colour are stored. These data
are organised as a texture, and subsequently evaluated as implicit function by a
GPU shader to colour the dataset vertices. An example is given in Figure 2.

Figure 2 Example rendering for sphere-based area marking

A second step uses object-oriented bounding boxes (OOBBs) for marking. Hence,
each box’ centre as well as its world-to-object transformation matrix is stored, in
addition to its colour and dimensions. The shader transforms the box centre and
each scene vertex into local coordinates using the transposed transformation
matrix. Then, the GPU evaluates the box’ implicit function for colouring each vertex.
The concept is shown in Figure 3, an example rendering is given in Figure 4.

Figure 3 Sketch of box evaluation for area marking

Figure 4 Example rendering for box-based area marking

A third, proposed extension handles 4-sided prisms. In this case, a single centre-
and transformation matrix is not sufficient for the inside/outside-check. We therefore
treat them as closed meshes, for which we store for each surface:

 3 corner vertices

 their counter-clockwise-oriented indices

 their transformation matrix into a local coordinate system
Inside the GPU shader, each scene vertex is transformed with each plane’s matrix
and checked if the vertex is inside the volume of the combined implicit function.

6 Technical Results

The Distributed rendering is tested on parts of the Dutch AHN-2 (www.ahn.nl) multi-
terabyte point dataset. The test configuration included 3 render clients, of which one
was acting as master. The scene, an urban environment covering 5km by 12.5km
(62.5 km², around 55 GB in total), was rendered in single-view and stereoscopic
view, using planar- and cylindrical projections. In our test, each client was
connected to an individual screen, without final frame composition. The render
clients’ hardware was as follows:

 Client 1/Master: Intel Xeon 6 x 3.2 GHz (12 processing elements (PE) in
Hyperthreading (HT) -mode), 16 GB memory, NVIDIA GeForce GTX 680

 Client 2: Intel Xeon 6 x 3.2 GHz (12 PE’s using HT), 16 GB memory,
NVIDIA Quadro K4000

http://www.ahn.nl/

 Client 3: Intel Xeon 4 x 2 GHz, 8GB memory, NVIDIA GeForce GTX 480
 The different device capabilities led to asynchronous render times between the
clients. Hence, errors occurred in the frame matching when using a timestamp as
mean of synchronisation. Using the frame number for synchronisation reduced the
rendering speed from 40 frames per second on average to 16 frames per second,
with an allowed lag of 3 frames. On the other hand, the visual result of the frames is
homogeneous, which gives an acceptable frame matching, and also allows a stereo
frame composition. An example rendering for cylindrical projections is given in
Figure 5.

Figure 5 Example for Distributed Rendering of a cylindrical projection on a 3-

display screen setup

 The approach for collaborative user navigation received positive feedback in
recent demonstrations. Two particular advantages of this interaction framework are
the ability to steer the visual via multiple devices connected to one client, as well as
the usage of several clients at the same time. The gained platform independence is
important. As the render solutions commonly run on Linux-platforms, most users
outside the informatics community were formerly hesitant to use in daily practice.
Thus, decision-makers are more willing to navigate via Microsoft Windows while
benefiting from advances in novel rendering algorithms.
 The scene manipulation algorithms are currently only tested on a smaller, artificial
dataset due to the necessary simplification pre-prepocessing. As the rendering is
executed in screen space, the results can be generalized to larger datasets. Figure
6 (left) shows performance figures on the spherical area marking. As can be seen,
we experience significant performance drops at around 30 sphere checks. This
behaviour can be improved by ordering the markers in spatial hierarchies, as in
Kehl et al. [7]. Figure 6 (right) shows performance figures for OOBB markers. Here,
a significant performance drop is observed at 7 markers, due to the more complex
inclusion check. The prism-based marking needs further refinement to be applied in
real-time. In general, although majorly applying colour annotation as mean of scene
modification in our tests, further operations such as object cutting and displacement
can simply be implemented using our modification approach. The measurement
systems was an Intel i7 920 x4 HT processor @ 2.66 GHz, 8 GB memory and an
AMD HD 4850 X2 graphics adapter (only one GPU used).

Figure 6 Measurements of the rendering speed [frames per second] for sphere-

based (left) and box-based (right) area marking

7 Discussion

The techniques currently help water boards and hydrologists in the Netherlands to
explore flood scenarios, occurring due to massive rainfall in urban environments
and levee breaches in coastal areas. Projection setups that are currently used for
this purpose include the 3D theatre in Groningen, a 5m-by-2.5m cylindrical wall
project, large-scale multi-touch tables in offices and a PowerWall planar projection
in the VRLab of the TU Delft. Furthermore, a large PowerWall setup for flood
visualisation is used in the Delft Science Center and the “Watersnoodmuseum” in
Zeeland for the purpose of public education.
 The Collaborative User Navigation- and Scene Manipulation allow water experts
to interactively communicate and plan flood protection measurements during routine
meetings and workshops in the water-management domain. The 2.5D annotation
version is already implemented in the 3di software package, and we are looking
forward to see this annotation technique becomes common practice in the future.
The approach has also further use in other domains of decision-making, such as oil-
and gas reservoir modelling, where 3D data annotations form the basis of the
reservoir segmentation, and pre-operative planning in hospitals, where medical
diagnoses are based on scanned object segmentations.

8 Future Work

The presented techniques are part of a continuous research effort towards a
consistent Visualisation- and Interaction framework for flexible communication
settings (with respect to projection, render- and interaction devices).
 The support for touch-based interaction devices is a demand emerging from
recent studies, which we will integrate in our collaborative navigation. This is
challenging to model because, in contrast to keyboard, joysticks and non-haptic
devices, touch-screens commonly demand a visual reference surface to form
navigation commands.
 The technique of collaborative scene modification still offers various challenges.
The data delivery of large-scale models as small data packages to client devices

still requires further attention. Although numerous techniques exist for data
simplification, we will investigate the delivery of the data to the client devices via
out-of-core data structures, such as they are delivered to the server application. As
explained in detail in the technique discussions (section 6), we will devote further
research in improving the prism-based annotation by simplifying the spatial
constraint and avoiding performance bottlenecks. One further extension is
management of the marker objects within texture-organised spatial hierarchies.

Acknowledgments

We thank the “Computer Graphics and Visualization Group” of Delft University of
Technology (headed by Prof. Dr. Elmar Eisemann) for equipment support, as well
as the “Donald Smits Institute” of the Rijksuniversiteit Groningen (headed by Dr.
Frans van Hoesel) for their collaboration on the Collaborative Rendering approach
experiments.
 We further thank dr. Ir. Gerwin de Haan, for his explanations on his implemented
Interaction framework in VRmeer, as well as Prof. Dr. rer. nat. Herbert Litschke and
Simon J. Buckley, for their short-term review.

Literature

[1] J. G. Leskens, C. Kehl, T. Tutenel, T. Kol, G. de Haan, G. Stelling and E.

Eisemann, “Interactive Flood-risk Analysis -- Case Studies using a High-

performance Visualization System,” in Special Issue on Decision Making on

Adaptation to Climate Change, Springer, (to appear 2014/2015).

[2] G. de Haan, Techniques and architectures for 3D interaction, 2009: Delft

University of Technology, Delft.

[3] A. Majumder and B. Sajadi, “Large Area Displays: The Changing Face of

Visualization,” Computer, vol. 46, no. 5, pp. 26-33, 2013.

[4] D. Mendes, M. Sousa, B. Araujo, A. Ferreira, H. Noronha, P. Campos, L.

Soares, A. Raposo and J. Jorge, “Collaborative 3D Visualization on Large

Screen Displays,” in Powerwall-International Workshop on Interactive,

Ultra-High-Resolution Displays - ACM CHI, 2013.

[5] J. Kuchera-Morin, M. Wright, G. Wakefield, C. Roberts, D. Adderton, B.

Sajadi, T. Höllerer and A. Majumder, “Immersive full-surround multi-user

system design,” Computers & Graphics, 2014.

[6] C. Kehl and G. de Haan, “Interactive Simulation and Visualisation of

Realistic Flooding Scenarios,” in Intelligent Systems for Crisis Management,

Enschede, The Netherlands, Springer, 2012, pp. 79-93.

[7] C. Kehl, T. Tutenel and E. Eisemann, “Smooth, Interactive Rendering

Techniques on Large-Scale, Geospatial Data in Flood Visualisation,” in

Information and Communication Technologie (ICT) Open, Eindhoven, The

Netherlands, 2013.

[8] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner and J.

T. Klosowski, “Chromium: a stream-processing framework for interactive

rendering on clusters,” ACM Transactions on Graphics (TOG), vol. 3, no. 21,

pp. 693-702, 2002.

[9] S. Eilemann, M. Makhinya and R. Pajarola, “Equalizer: A scalable parallel

rendering framework,” IEEE Transaction on Visualization and Computer

Graphics, vol. 15, no. 3, pp. 436-452, 2009.

[10] C. Wingrave, B. Williamson, P. D. Varcholik, J. Rose, A. Miller, E.

Charbonneau, J. Bolt and J. LaViola, “The Wiimote and Beyond: Spatially

Convenient Devices for 3D User Interfaces,” IEEE Computer Graphics and

Applications, vol. 2, no. 30, pp. 71-85, 2010.

[11] A. Schmeil and M. Eppler, “Formalizing and Promoting Collaboration in 3D

Virtual Environments - A Blueprint for the Creation of Group Interaction

Patterns,” in Facets of Virtual Environments, 33 ed., Springer Berlin

Heidelberg, 2010, pp. 121-134.

[12] G. de Haan, E. J. Griffith, M. Koutek and F. H. Post, “Hybrid Interfaces in

VEs: Intent and Interaction,” in Proceedings of the 12th Eurographics

Conference on Virtual Environments, Aire-la-Ville, Switzerland, Switzerland,

2006.

[13] E. Gobbetti and J.-F. Balaguer, “i3D: An interactive system for exploring

annotated 3D environments,” in Scientific Visualization'95: proceedings of the

International Symposium, Cagliari, Italy, 1995.

[14] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano and A. T.

Helser, “VRPN: A Device-independent, Network-transparent VR Peripheral

System,” in Proceedings of the ACM Symposium on Virtual Reality Software

and Technology, New York, NY, USA, 2001.

[15] O. Hagsand, “Interactive multiuser VEs in the DIVE system,” IEEE

MultiMedia, vol. 1, no. 3, pp. 30-39, 1996.

[16] M. Pauly, M. Gross and L. P. Kobbelt, “Efficient simplification of point-

sampled surfaces,” Proceedings of the conference on Visualization '02 (VIS

'02), pp. 163-170, 2002.

[17] J. O. Talton, “A short survey of mesh simplification algorithms,” University of

Illinois at Urbana-Champaign, 2004.

