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Abstract: Generating accurate volume meshes from segmented image 
volumes is important in certain medical applications. One application is finite 
element analysis (FEA) for orthopaedic pre-operative planning. The resulting 

FEA models can be used in patient-specific, bio-mechanical simulations and 
implants positioning. 
 

Currently available software packages for volume meshing of segmented data 
can generate accurate, usable meshes. However many of them cannot create 
feature-adaptive volume meshes of multiple intersecting structures while 

maintaining high precision. An approach that respects both these 
requirements is based on a dynamic particle system. In this paper, we 
propose a system that specifically includes the ability to handle multiple labels 
and their interfaces. 

 
Dynamic particle systems are computationally expensive and may be slow. 
As an improvement to our reference method, we implement a fast Integer 

Medial Axis algorithm. Furthermore, we propose an improved local 
triangulation scheme that may enhance the ability to model sharp features 
with a given particle count. Strict theoretical sampling restrictions limit the 

flexibility of Delaunay-based meshing methods. We suggest that using a local 
reconstruction scheme is a good approach to decouple the system from strict 
sampling limitations. 

 
We evaluate our system by comparing it to a reference particle-based 
meshing implementation. Results show that the choice of the Medial Axis 

Transform (MAT) methods greatly influences quality and speed of feature-
adaptive volume meshing. 

 
1 Introduction 
 
The generation of volumetric meshes from medical scans is an often-required step 
in patient-oriented orthopaedic planning. The generated volume meshes can be 
used in bio-mechanical simulations to optimize positioning and orientation of 
orthopaedic implants as well as to adapt the implant design to the needs of the 
patient. Such a workflow example is shown in Fig. 1. Bio-mechanical simulations 
demand topologically correct meshes to successfully compute stress and strain in 



implants and bone. The precision of the simulation is directly dependent on the 
precision of the mesh, which is why very precise meshes are needed for such 
simulations. Also the runtime of bio-mechanical simulations is a relevant issue that 
has a practical impact on a system's usability. Accurate models with a large number 
of elements are often required to represent an anatomical region, but may result in 
a prohibitive computational load. Therefore, required medical volume meshes 
should try to intelligently minimize the number of mesh elements to reduce the 
computation time. 
 

 
Fig. 1 Orthopaedic workflow for hip prosthesis replacement: A 3D CT-scan (a) is 
segmented into labels (b). This discrete volume image is converted to a volume 
mesh (c). Based on medical simulations (d) [1], optimal implant design and 
positioning can be determined. 

One common way to generate volume meshes out of segmented medical scans is 
by generating of conformal surface meshes for each segmented sub-structure. 
These surface meshes are then filled by volume meshing algorithms. An example of 
this approach is the Delaunay Surface Triangulation of each labelled medical 
structure and its volumetric refinement via 3D Delaunay Tetrahedralization [2] [3]. 

 
2 Related Work 
 
The base challenge of our research is the creation of volume meshes. Here, we 
focus on Delaunay Tetrahedralization concepts. Two major approaches for feature-
adaptive Delaunay Tetrahedralization are meshing by refinement, and meshing of 
iteratively optimized surface-point vertices. Volume meshing by refinement 
commonly starts by building an initial volume mesh [4]. Then, material interfaces 
are determined. Afterwards, a weighted Delaunay Tetrahedralization iteratively 
refines the initial mesh by vertex insertion while protecting material interfaces [5].  
 
In meshing via iteratively optimized surface-point vertices, we build up an optimal 
surface mesh that is successively filled by volume meshing methods (i.e. Delaunay 
Tetrahedralization, Advancing Fronts). The major assumption is that a conformal, 
precise surface mesh is a sufficient description to subsequently generate a 
conformal volume mesh. The initial surface mesh vertices are determined by a 
particle system optimization step [6]. This particle distribution needs to adhere to 3D 
Delaunay mesh topology guarantees and limitations for generic point clouds [7], 
which results in the ε-sample requirement, first stated by Amenta et al. [8] [9] [10]. 



Meyer et al. use this sample requirement to dynamically distribute point-particles on 
3D surface structures for subsequent meshing. This particle system approach also 
lends itself to multi-material medical volume meshes [2]. The advantages of this 
meshing approach are: 
 

 application to multi-material medical structures 

 possibility of feature-adaptive, non-uniform mesh output 

 theoretical guarantees 
 
This approach also has some drawbacks, which we want to address in our 
research. These drawbacks include: 
 

 long computation time 

 oversampling of edges and corners (see Fig. 2) 

 lack of sharp-feature recreation due to ε-sample requirement 
 

  
Fig. 2 Too few samples lead to wrong topology or excessive smoothing (left), too 
many samples lead to an excessive number of mesh elements (right). 

 

3 Contribution 
 
Our main contribution is the application of a fast, discrete Medial-Axis scheme to 
speed up the volume mesh generation process from image volumes. Our side 
contribution is the proposal of a local surface triangulation scheme for image 
volumes to overcome the ε-sampling requirement during the volume meshing 
process. 

 
4 Concepts 
 
We have two major objectives in our work. First, we want to speed up the meshing 
system. Second, the 3D reconstruction of segmented structures should happen with 
a minimal amount of sample-point vertices while maintaining topological 
correctness of the resulting model. We handle both challenges separately. 



 
4.1 System Speed-Up by fast, discrete Medial Axis Transform 
 
Our initial analysis of BioMesh3D [2], our reference system, revealed that its MAT 
implementation is the computationally most expensive sub-process (see Fig. 3). 
BioMesh3D calculates the MAT with centres of maximal spheres [11]. This 
algorithm is not optimal for the task because, although generating a highly precise 
MAT, the Centre-of-Maximal-Spheres algorithm is not designed for discrete objects 
such as digital volume images. A suitable MAT algorithm requires: 
 

 high precision on sub-voxel level 

 fast, efficient computation 

 a design for discrete space 
 

 
Fig. 3 BioMesh3D runtime assessment: the chart shows the relative runtime of 
each meshing sub-process with respect to the total runtime. It reveals the major 
computational expense of the Medial Axis-computation. 

 
We reviewed existing MAT algorithms on the basis of these requirements. Neither 
the common thinning algorithm [12] [13] nor the highly-precise reduced discrete 
Medial Axis (RDMA) [14] [15] were suitable candidates. The Integer Medial Axis 
(IMA) algorithm [16] met all listed requirements, which is why we decided to apply it 
in our case. Notable properties of the IMA are: 
 

 linear complexity with respect to the number of input voxels 

 flexibility, due to pruning parameters of axis branches 

 acceptable accuracy 

 discrete data-centred design 

 

  



4.2 Minimal Sample for topologically accurate 3D Reconstruction 
 

 
BioMesh3D controls the model’s smoothness via a process called Tightening [17] 
[6]. The Tightening-filter limits the maximum radius of curvature. The relation 
between radius of curvature and the number of sample points is as follows: 
 

ε-sampling requirement: 
                       (1) 

                            (2) 

 
with λ being the local feature size (LSF) [8] [10]. As a consequence, areas with a 
large radius of curvature need fewer samples to be reconstructed. Areas with a 
small radius of curvature need more samples to be reconstructed. 
 
At this point, we want to highlight that the ε-sampling requirement only applies to full 
3D Delaunay Triangulations without prior surface knowledge. It is possible to 
generate a conformal tetrahedral volume mesh via 3D Delaunay Tetrahedralization 
from any conformal triangular surface mesh without the insertion or displacement of 
surface vertices (e.g. Steiner Points) [18]. We therefore avoid the strict ε-sampling 
limitation by replacing the 3D Delaunay Triangulation with 2D Triangulation in local 
tangent space, for which the sampling requirement doesn't apply. We extract the 
necessary tangent space parameters (i.e. vertex normals) via point sample 
projection on a isosurface that is generated directly from the input volume image 
(see Fig. 4). For reasons of simplification, we approximate the isosurface via a 
Marching Cubes-surface of the original volume image structures. 
 

 
Fig. 4 Re-projection process: A first step is the determination of point sample 
normals via projection on the isosurface (left chart). Subsequently, we determine 
the neighbourhood of each sample via k-nearest neighbour extraction and the 
application of an inter-normal angle criterion. 

 
The extracted neighbourhood is then meshed via 2D Local Delaunay Triangulation 
(LDT). The extracted mesh connectivity is then applied in 3D space. We designed 
three triangulation algorithms: an unconstrained LDT, a star-constrained LDT (fig. 
5a) and a Convex Hull-constrained LDT (fig. 5b). For more information on the 
implementation with CGAL, we refer the reader to the online material [19]. 
 



  
(a) (b) 

Fig. 5 constrained Local Delaunay Triangulation variants: star (5a) / convex hull 
(5b) 

 

5 Results 
 
We integrated the volume meshing concept described in Sec. 4 in the open source 
“Delft Visualisation and Image processing Development Environment” (DeVIDE) 
[20]. DeVIDE’s modular development environment is well-suited to our modular 
modifications to the existing methodology of Biomesh3D. In the remainder of this 
section, we separately describe the results and improvements we obtained with IMA 
and LDT. 
 
5.1 Integer Medial Axis 
 
We used the IMA to speed up the meshing process while maintaining the precision 
of the reference system, BioMesh3D. We compared our results with BioMesh3D, 
using the common “tooth” volume image sample dataset. The runtime comparison 
is presented in Table 1 and Fig. 6. One can see that the IMA effectively reduced the 
mesh computation time. 
 

 
Fig. 6 "Tooth" runtime measurement comparison (b), showing our solution (top bar) 

and BioMesh3D (bottom bar) 



 BioMesh3D DeVIDE FE-Mesher 

Tightening 2 min   1 sec 1 min   2 sec 

Binarization  2 min 18 sec 

Isosurfacing 14 sec 0.6 sec 

Isosurface Smoothing  1.4 sec 

Medial Axis Transform 1 h 40 min 52 sec 1 sec 

Sizing Field 3 min   1 sec 52 sec 

Crossing Seeds 8 sec 14 sec 

Particle System 37 min 15 sec 20 min   5 sec 

Boundary Meshing 8 sec 18 sec 

Volume Meshing 7 sec 35 sec 

TOTAL 2 h 23 min   5 sec 26 min 17 sec 
Table 1 comparison of runtime for Tooth dataset 

We assess the precision of the mesh by assessing the volume-mesh quality with 
respect to aspect ratio, radius ratio and tetrahedral volume. The aspect and radius 
ratio describe the mesh quality, since large values indicate the presence of 
degenerated triangles. The range of volumes is only a hint regarding the mesh 
grading. Tetrahedra that deviate a lot from the mesh average are considered 
tetrahedra of bad quality. The results of our meshing process (Table 2) show that 
we still need to address the high amount of bad tetrahedra compared to other 
comparable software packages [21] in the future. On the other hand, one has to 
note that results of BioMesh3D and our meshing system are similar with respect to 
quality range, average and variance. 
 

Tooth # Tetra 142795  

 Max. Min. Avg. Variance # bad Tetra % bad 

Aspect Ratio 119.69 1.01 1.94 1.00 9282 6.50 

Radius Ratio 105.43 1.00 1.69 0.83 6736 4.72 

Volume 272.34 0.0 2.96 21.74 0 0.0 

Table 2 DeVIDE FE-Mesher Quality: Tooth dataset 

 
 
5.2 Local Delaunay Triangulation 
 
The LDT of non-uniformly sampled data is currently not successful. In this first 
conceptual implementation, we used the kNN-Algorithm to determine the local 
neighbourhood of each sampled particle. Our results show that kNN algorithms are 
not suited to sparsely-sampled, fast-grading point clouds. A consequence is the 
formation of holes in the mesh, making it useless for volume meshing. 
 



   
(a) (b) (c) 

Fig. 7 meshing results with non-constrained LDT via VTK (a), non-constrained LDT 
via CGAL (b) and convex hull-constrained LDT via CGAL (c) on an artificial 
example dataset. The colours indicate the curvature of the base MarchingCubes 
mesh, with orange representing no curvature, red representing concave curvatures 
and blue representing convex curvatures. 

 
6 Conclusion and Future Work 
 
Our objective was to improve the computational performance and to reduce the 
number of tetrahedral elements in dynamic particle-based multi-material tetrahedral 
meshing of medical image volumes. Our design consists of the IMA calculation to 
speed up the application and the use of a local triangulation algorithm. The change 
from the “centre-of-maximal-spheres” calculation to the IMA resulted in an improved 
runtime while maintaining the original precision. Despite the problems we encoun-
tered in practice, we still think that local triangulation algorithms could be a promis-
ing direction for non-uniform meshing because they are not bound to the strict ε-
sampling criterion. A working local triangulation algorithm would need a precise 1-
ring neighbourhood description because simple nearest-neighbour determination 
seems unsuitable for the task. 
 
In the future, we plan to focus on a correct 1-ring neighbourhood localisation to 
generate closed, watertight surface meshes using a variant of LDT. One approach 
in this domain is the use of Natural Neighbours. Additionally, we are also investigat-
ing different ways of conformal volume meshing by reusing the initially-computed 
Marching Cubes surfaces. 
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